Contents

What's New... 7

Introducing Turbonomic... 16
 How Turbonomic Works... 16
 The Desired State... 17
 The Market and Virtual Currency... 18
 Risk Index.. 19
 The Turbonomic Supply Chain... 20
Turbonomic Targets... 21
Resource Descriptions.. 24

Logging In to Turbonomic.. 28

The Home Page.. 29
 Hybrid View.. 30
 ON-PREM View... 31
 CLOUD View... 33
 Tracking Cloud Cost.. 34
 Resizing Cloud Workloads.. 36
 Reserved Instances (RIs)... 37

Supply Chain of Entities... 38
 Supply Chain - Load Balancer... 41
 Supply Chain - Virtual Application... 42
 Supply Chain - Application Server.. 43
 Supply Chain - Application... 45
 Supply Chain - Business Application... 47
 Supply Chain - Database Server.. 49
 Supply Chain - Container.. 51
 Supply Chain - ContainerPod... 53
 Supply Chain - Namespace.. 55
 Supply Chain - Workload Controller.. 57
 Supply Chain - Container Spec.. 58
 Supply Chain - Virtual Machine.. 59
 Supply Chain - Virtual Datacenter.. 64
 Supply Chain - Host.. 68
 Supply Chain - Volume... 71
 Supply Chain - Storage... 72
Contents

Supply Chain - Disk Array... 74
Supply Chain - Storage Controller... 76
Supply Chain - IO Module... 77
Supply Chain - Fabric Interconnect... 78
Supply Chain - Chassis.. 78
Supply Chain - Datacenter.. 79
Supply Chain - Zone.. 81
Supply Chain - Region.. 81

Working With a Scoped View.. 83
Scoping the Turbonomic Session.. 83
Overview Charts... 86
Details View.. 88
Scope Policies... 89
List of Entities... 90
Navigating With the Supply Chain.. 91
Viewing Cluster Headroom.. 92

Turbonomic Actions... 93
Actions by Entity Type.. 94
Action Types... 95
Action Categories... 100
Action Modes... 102
Working With the Generated Actions... 103
Pending Actions.. 104
 Default Pending Actions Charts... 105
 Pending Actions Scope... 106
 Pending Actions List.. 108
 Action Details.. 111
Actions Tips and Best Practices... 111
 Cloud VMs with Failed Sizing.. 112

Plans: Looking to the Future.. 113
Plan Management... 114
Setting Up Plan Scenarios... 115
Plan Scenarios and Types.. 121
 Optimize Cloud Plan.. 123
 Alleviate Pressure Plan... 131
 Custom Plan.. 134
Configuring Nightly Plans.. 145
Billing and Costs.. 283
 RI Purchase Profile... 284
 OS Migration Profile.. 285
 Hardware Costs.. 286
 Price Adjustments.. 286
 Creating a Price Adjustment... 287
 Price Override: Azure... 290
 Price Override: AWS.. 292
Administrative Tasks... 294
 Managing User Accounts... 294
 Configuring a Group for SSO Authentication... 301
 Maintenance: Logging and Troubleshooting.. 303
 The Updates Page.. 304
 License Configuration... 305
 Email Notifications.. 307
 Email Settings... 307
What's New

View the history of new features, as they have been added to different versions of Turbonomic:

Version 7.22.1

- **Separate Billing Targets for AWS Environments**

 With this release Turbonomic introduces a separate target for discover AWS billing information. This data can be used when discovering costs for RIs and workload instances.

 The separate billing target supports the practice of purchasing RIs in a master account, and running workload instances in sub accounts. Turbonomic can attach to the master account with fewer privileges than are required for the sub accounts that manage workloads.

- **Improved Actions for Hosts in Maintenance Mode**

 This release improve performance of action management when a host goes in or out of maintenance mode. Now Turbonomic more quickly propagates the change of host state throughout the system, and clears the impacted actions from the Pending Actions list.

- **Shared-Nothing VM Migrations**

 This release introduces the **Shared-Nothing Migration** setting for actions in VM Automation Policies. To enable Shared-Nothing moves:

 - Set the action modes to be the same for VMs and Storage in a given scope. The modes for both must be either AUTOMATED or MANUAL.
 - Explicitly turn on **Shared-Nothing Migration** for that given scope of VMs.

- **EARLY ACCESS FEATURES:**
This release introduces previews for the following features. We have performed limited testing of these features, but we encourage you to try them in controlled settings, and provide us with any feedback you might have.

- **Improved Container Management**
 For Kubernetes environments, this release introduces new entity types to represent your environment in the supply chain. Turbonomic now discovers:
 - Namespace
 - Workload Controller
 - Container Spec

 Introducing these entity types in the model enables analysis to better reflect the utilization and requirements of your environment, which results in better actions to maximize performance and savings.

 This is an Early Access release of the new Kubernetes support. To discover these entity types, Turbonomic introduces a new version of the Kubeturbo service. For information about the latest Kubeturbo releases, go to https://github.com/turbonomic/kubeturbo/wiki/Server-Versions-and-Kubeturbo-Tag-Mappings

- **Integration with VMware Horizon VDI**
 For server-based deployments of Turbonomic, only:

 To support virtual desktop infrastructures, Turbonomic has added new entities to the Supply Chain:
 - Business User – A user account that is entitled to launch one or more active VDI sessions
 - Desktop Pool – A collection of desktops that support users
 - View Pod – A logical grouping of desktop pools, that provides a capacity for active sessions

- **Improved vSAN Support for Hyperconverged Environments**
 For server-based deployments of Turbonomic, only:

 For environments that use hyperconverged infrastructure to provide storage on vSAN, Turbonomic can represent the storage that is provided by a cluster of HCI hosts as a single storage entity. Analysis can generate actions to scale Storage Amount, Storage Provisioned, and Storage Access in the vSAN. You can use HCI Host templates to run plans that add capacity to your vSAN.

- **Nutanix Support**
 For server-based deployments of Turbonomic, only:

 This release introduces support for Nutanix hyperconverged infrastructures. This includes management of Nutanix fabrics, where the supply chain treats a Nutanix Storage Pool as a disk array. Turbonomic recognizes Nutanix storage tiers when calculating placement of VMs and VStorage, and it can recommend actions to scale flash capacity up or down by adding more hosts to the cluster, or more flash drives to the hosts.

5/13/2020 Version 7.22.0

- **Support for Azure Managed Ultra Disk Storage**

 For Azure environments, Turbonomic now discovers Managed Ultra Disk storage, and the respective costs for IOPS and Throughput. As part of discovery, Turbonomic recognizes the requirements that VM types must meet in order to use Managed Ultra storage. For actions to scale a VM, Turbonomic only recommends changing to a VM type that can support the indicated storage. This means you can automate VM scale actions, and the resized VMs will still use the appropriate Managed Ultra Disk storage.

- **Shared-Nothing VM Migrations**
This release introduces the **Shared-Nothing Migration** setting for actions in VM Automation Policies. To enable Shared-Nothing moves:

- Set the action modes to be the same for VMs and Storage in a given scope. The modes for both must be either AUTOMATED or MANUAL.
- Explicitly turn on **Shared-Nothing Migration** for that given scope of VMs.

4/24/2020: Version 7.21.5

- **User Interface Changes**

 For public cloud environments, the user interface now refers to *cloud tiers* instead of *templates*. In public cloud environments, you choose workload instance types to deploy among different tiers. For example, for VM instance types you choose among compute tiers, and for storage you choose among storage tiers. As you configure policies and review your cloud environment, the user interface refers to these as *cloud tiers*.

 Turbonomic still uses templates for planning. For example, when you configure a plan you can choose templates for VMs to add to the plan. Turbonomic also creates templates to represent average utilization per cluster, and it discovers templates for VMs in your on-prem environment. You should remember that these templates are not the same as the cloud tiers that your public cloud services provide.

- **Improvements for VMem Resize Actions**

 This release introduces the **Use Hypervisor VMEM for Resize** setting for VM policies.

 For on-prem environments, Turbonomic discovers VMEM utilization and can recommend actions to resize the VMEM capacity on a VM. For environments that do not include any Guest OS Process targets, the data that analysis uses to make these recommendations comes from the underlying hypervisors. Unfortunately, that data is not always sufficient to result in accurate resize recommendations. With this release, you can use the **Use Hypervisor VMEM for Resize** setting to determine how to generate VMEM recommendations:

 - **On** (default)

 When your environment includes Guest OS Process targets, Turbonomic uses the VMEM metrics those targets discover. If a scope of VMs does not fall under Guest OS Process targets, then analysis *will* generate VMEM resize actions for that scope. In this case, analysis uses the VMEM metrics it discovers from the underlying hypervisors.

 - **Off**

 When your environment includes Guest OS Process targets, Turbonomic uses the VMEM metrics those targets discover. If a scope of VMs does not fall under Guest OS Process targets, then analysis *will not* generate VMEM resize actions for that scope.
4/15/2020: Version 7.21.4

• Application Resource Management for Microsoft Azure Environments
 This release adds support for Microsoft Azure public cloud environments. To manage your Azure environment, you configure two types of target:
 ◦ Azure Service Principal Targets
 Microsoft Azure is Microsoft’s infrastructure platform for the public cloud. You gain access to this infrastructure through a service principal target. Service principal targets automatically discover the subscriptions to which the service principal has been granted access in the Azure portal.
 ◦ Microsoft Enterprise Agreement Targets
 An Enterprise Agreement target enables Turbonomic to use custom pricing and discover reserved instances in your environment. When you configure an Enterprise Agreement target, Turbonomic uses that richer pricing information to calculate workload size and RI coverage for your Azure environment.
 For more information, see "Microsoft Azure" in the Target Guide and "Microsoft Enterprise Agreement" in the Target Guide.

• Optimize Cloud Plans
 This release introduces the Optimize Cloud plan. This plan identifies ways to optimize your costs by choosing the best workload tiers (most adequate compute resources), regions, accounts, or resource groups to host your workloads. The plan also identifies workloads that can change over to RI pricing plans, and it compares your current costs to the costs you would get after executing the plan recommendations. For more information, see Optimize Cloud Plan (on page 123).

• Enhanced Descriptions for Delete Volume Actions
 For public cloud environments, Turbonomic can discover detached storage volumes and generate Delete Volume actions. In this way, you can use Turbonomic to make sure you do not pay for unused storage on the cloud.
 To help you make decisions about these actions, with this release the details for Delete Volume Actions now include:
 ◦ How long ago the volume was last attached, in days
 ◦ The name of the VM to which the volume was last attached

• Audit Log Improvements
 The audit log now includes entries for changes to Turbonomic policies. If a user deletes, adds, or modifies a policy for any scope in your environment, Turbonomic enters that event in the audit log.

03/27/2020: Version 7.21.3

• Scale IO Support
 This release introduces support for Dell EMC ScaleIO software-defined storage. You can now configure targets to ScaleIO versions 2.x or 3.x.
03/13/2020: Version 7.21.2

- Headroom Calculation Improvements

This release introduces the new setting, **VM Growth Observation Period (in months)**, for the automation policy Global Defaults.

Turbonomic runs nightly plans to calculate headroom for the clusters in your on-prem environment. To review your cluster headroom in dashboards, set the view scope to a cluster. With that scope, the view includes charts to show headroom for that cluster, as well as time to exhaustion of the cluster resources.

To calculate cluster growth trends, analysis uses historical data for the given clusters. In previous versions, analysis used ten days of historical data. However, not all clusters show utilization growth in a 10-day span.

With the **VM Growth Observation Period** setting, you can specify how much historical data the headroom analysis will use to calculate time to exhaustion of your cluster resources. For example, if cluster usage is growing slowly, then you can set the observation to a period that is long enough to capture that rate of growth.

The default value for **VM Growth Observation Period** is 1 month. If the historical database does not include at least two entries in the monthly data for the cluster, then analysis uses daily historical data.

03/03/2020: Version 7.21.1

- Turbonomic SaaS

With this release we introduce Turbonomic SaaS. Get all the performance and cost benefits of Application Resource Management in your AWS cloud estate, with Turbonomic deployed and managed securely, reliably and able to scale.

Turbonomic SaaS automatically provides continuous resourcing actions for AWS compute and database assets and RI optimization, as well as actions to eliminate unused cloud storage. All actions are based on application demand, assuring performance while enforcing business compliance and increasing efficiency.

For more information, contact your sales representative.

- Cloud Targets

This release of Turbonomic introduces management of public cloud environments. This includes the following targets:

 - Amazon Web Services (AWS)

 To manage your AWS infrastructure, you configure AWS accounts as targets. You can set up targets so that Turbonomic discovers Billing Families, and takes them into account when calculating RI costs.

 - Microsoft Azure (Early Access)

 To manage your Microsoft Azure environment, you configure Service Principal accounts as targets. Through these targets, Turbonomic discovers the subscriptions to which the service principal has been granted access in the Azure portal.

 - Microsoft Enterprise Agreement (Early Access)

 You can configure Turbonomic to manage Azure subscriptions within the context of an Enterprise Agreement (EA). An EA target enables Turbonomic to use custom pricing and discover reserved instances (RIs). When you configure an EA target, Turbonomic uses that richer pricing information to calculate workload size and RI coverage for your Azure environment.
- **Application Insights (Early Access)**

 For Microsoft Azure environments, this release supports resource management of the application infrastructure that you have set up to be monitored by Application Insights. Turbonomic extends resource management through the application tier, all the way to the workloads and storage services that host your applications.

- **New Relic**

 With this release you can configure applications managed by New Relic to be Turbonomic targets. Then Turbonomic analysis can build APM and Infra components into a supply chain of Application Servers, Applications, and and their hosting VMs.

- **RI Management**

 As part of its public cloud support, Turbonomic can recommend actions to improve your utilization of RI resources. This includes Buy RI actions to purchase RIs for specific workloads (for AWS), and RI Optimization actions to fine tune the way your workloads use the current RI inventory.

 The user interface includes charts to show:

 - RI Inventory – The RI workloads that Turbonomic discovers, listed by tiers
 - RI Utilization – How well you have utilized the RI inventory
 - RI Coverage – The capacity of your current VM workload compared to the capacity of workload that is covered by RIs

 Turbonomic uses this information, along with RI pricing, to make sure you get the resources you need at the best possible cost.

- **Consistent Resizing**

 For a group of VMs on the public cloud, you can configure a Consistent Resizing policy to keep all the group members at the same size.

 In cloud environments, Turbonomic discovers Availability Sets for Azure and Autoscaling Groups for AWS. For these groups, it creates Consistent Resizing policies to model their resizing rules in Turbonomic. As part of this discovery, it ensures the VMs will only use VM tiers that are viable for the given group. If you want to change the way Turbonomic manages these discovered groups, you can edit the policies as you see fit.

- **Volumes for Cloud Storage**

 For storage in public cloud environments, this release introduces the *Volume* entity type. A Volume is a storage device that you can attach to a workload instance. To support analysis of storage utilization, Turbonomic tracks Storage Access, Storage Amount, and IO Throughput on volumes.

 Turbonomic can discover unattached volumes and recommend or execute actions to delete these volumes from your environment. You can set up policies to configure automated or manual deletes of such volumes.

- **Improved handling of NVMe Storage on the Cloud**

 Turbonomic recognizes when a VM instance includes an NVMe driver. To respect NVMe constraints, it will not recommend a move or resize to an instance type that does not also include an NVMe driver. However, you can ignore NVMe constraints, and then Turbonomic is free to resize or move the instance to a type that does not include an NVMe driver.

02/19/2020: Version 7.21.0

- **Planning Improvements**
What's New

◦ Overhaul of the Planning Workflows and Functionality
 This release includes a significant reorganization of the Plan user interface. It should be easier to use wizards
to configure plans, and easier to configure custom plans. In addition, you should find it easier to review and
interpret the plan results. This overhaul includes improvements to the Cloud Comparison chart that make it
easier to see how Turbonomic calculates savings and investments on the cloud.
 See Setting Up Plan Scenarios (on page 115).

◦ Plan Migrations of On-Prem Databases to Azure SQL Managed Instances
 When migrating your on-prem environment to the Azure cloud, Turbonomic identifies SQL Server instances.
You can configure the plan to migrate those database instances to Azure SQL Managed Instances.

 See "Migrate SQL Database to Azure Plan" in the User Guide.

◦ Integration of Plan Results with the Azure Migrate Portal
 After you plan a migration from on-prem to your Azure environment, you can upload the plan results to the
Azure Migrate portal.
 See "Uploading Plan Results to Azure Migrate" in the User Guide.

• Improved Support for Azure Environments
 In addition to enhanced plans for migrations to Azure, this release adds support for:
 ◦ Azure Enterprise Agreements
 Turbonomic now recognizes Microsoft Azure Enterprise Agreements (EAs). When you configure an EA target
and set the EA key to your Azure targets, Turbonomic uses that richer pricing information to calculate workload
placement. For more information, see Azure Enterprise Agreements (on page 204).
 This release makes it easier to add Azure Accounts as targets. Starting with this release, you can add a single
Service Principal target, and Turbonomic discovers the individual accounts related to that Service Principal. For
more information, see "Azure Enterprise Agreements" in the Target Configuration Guide.

 ◦ Azure Reserved VM Instances
 If you add an Azure EA target, the pricing includes costs for RI VMs. Turbonomic uses this information to
recommend RI Buy actions, and to calculate the savings you should see as a result.

• Cloud Native and Container Improvements
 This release includes
 ◦ Consistent Scaling Actions for Containers
 Turbonomic now discovers and groups the containers for a given service. It then enables a policy that maintains
consistent resizing for the group of containers. As a result, Turbonomic generates actions to resize all the
members of that group to the same size, such that they all support the top utilization of each resource
commodity in the group. Executing the actions will then update the container deployment.

 See Analysis Policies: Containers (on page 257).

 ◦ Horizontal Cluster Actions
 For Kubernetes environments where the Cluster API is present, this release introduces support for Kubernetes
Node Provision actions. Turbonomic discovers whether the Cluster API is present. To set up elastic Kubernetes
clusters, you can set the provision actions to Manual or Automated.
What's New

- Capacity Planning for Cloud Native
 You can configure custom plans to explore what happens if you:
 - Scale demand in or out horizontally (add or remove containers or container pods)
 - Scale demand vertically (increase or decrease utilization for groups of containers or pods)
 - Change cluster resources (for example, take down nodes or change templates)
 - Ignore constraints in your container environment
 - Change action policies and apply specific placement policies to the scope of your container environment
 For more information, see "Container Utilization Plan" in the User Guide.

- Recognition of Requests and Reservation of Resources
 In Kubernetes environments, scheduling takes into account guaranteed resource requests. You can now see how much request capacity is currently utilized for a given node (VM), Pod, or namespace, alongside a view of how the limits capacity is utilized. Turbonomic uses this information when calculating actions to manage pod placement, and to manage underlying resources. See Supply Chain – ContainerPod (on page 53).

- Native Integration with Service Now
 This release introduces Turbonomic Actions, a ServiceNow application that you install via an update set. Turbonomic Actions integrates Turbonomic with your ServiceNow account to log the actions Turbonomic generates, and to defer these actions to your ServiceNow workflow for approval. Upon approval, Turbonomic executes the actions during the scheduled maintenance window, and logs the result in ServiceNow.
 For information about setting up policies for these actions, see "Action Orchestration" in the User Guide. To get the Turbonomic Actions application, contact your sales representative.

- Improved Action Scheduling for Automation Policies
 Turbonomic includes improvements to action scheduling. It is now easier to set up action schedules. Also, if Turbonomic recommends an action outside of the schedule window, it queues the action for later execution at the scheduled time. If the action is still valid at that time, Turbonomic will execute it. See Working With Schedules (on page 209).

- Integration with VMware Horizon VDI
 To support virtual desktop infrastructures, Turbonomic has added new entities to the Supply Chain:
 - Business User – A user account that is entitled to launch one or more active VDI sessions
 - Desktop Pool – A collection of desktops that support users
 - View Pod – A logical grouping of desktop pools, that provides a capacity for active sessions
 For more information, see these entity types in Supply Chain of Entities (on page 38) and see their policy settings in Analysis Settings (on page 252).

- Improved vSAN Support for Hyperconverged Environments
 For environments that use hyperconverged infrastructure to provide storage on vSAN, Turbonomic can represent the storage that is provided by a cluster of HCI hosts as a single storage entity. Analysis can generate actions to scale Storage Amount, Storage Provisioned, and Storage Access in the vSAN. See "vSAN Storage" in the User Guide.
 You can use HCI Host templates to run plans that add capacity to your vSAN. For more information, see HCI Host Template Settings (on page 279).

- Custom Reports
 To support custom reports, you can now create a Custom Report Template that executes your own SQL queries into the Turbonomic database. Once you create the custom template, you can generate and view them, schedule them to generate a copy at the times you specify, and set up subscriptions to them, the same as you can with the standard reports. For more information, see "Reports: Viewing Historical Data" in the User Guide.
• OpenStack Queens Support

For use in OpenStack environments, Turbonomic is now certified to support OpenStack Queens.
Introducing Turbonomic

Thank you for choosing Turbonomic, the premier solution for Application Resource Management (ARM) of cloud and virtual environments.

Application Resource Management is a top-down, application-driven approach that continuously analyzes applications’ resource needs and generates fully automatable actions to ensure applications always get what they need to perform. It runs 24/7/365 and scales with the largest, most complex environments.

To perform Application Resource Management, Turbonomic represents your environment holistically as a supply chain of resource buyers and sellers, all working together to meet application demand. By empowering buyers (VMs, instances, containers, and services) with a budget to seek the resources that applications need to perform, and sellers to price their available resources (CPU, memory, storage, network) based on utilization in real-time, Turbonomic keeps your environment within the desired state — operating conditions that achieve the following conflicting goals at the same time:

- Assured application performance
 Prevent bottlenecks, upsize containers/VMs, prioritize workload, and reduce storage latency.
- Efficient use of resources
 Consolidate workloads to reduce infrastructure usage to the minimum, downsize containers, prevent sprawl, and use the most economical cloud offerings.

Turbonomic is a containerized, microservices architected application running in a Kubernetes environment (or within a VM) on your network or a public cloud VPC. You then assign services running on your network to be Turbonomic targets. Turbonomic discovers the entities (physical devices, virtual components and software components) that each target manages, and then performs analysis, anticipates risks to performance or efficiency, and recommends actions you can take to avoid problems before they occur.

How Turbonomic Works

To keep your infrastructure in the desired state, Turbonomic performs Application Resource Management. This is an ongoing process that solves the problem of assuring application performance while simultaneously achieving the most efficient use of resources and respecting environment constraints to comply to business rules.
This is not a simple problem to solve. Application Resource Management has to consider many different resources and how they are used in relation to each other, and numerous control points for each resource. As you grow your infrastructure, the factors for each decision increase exponentially. On top of that, the environment is constantly changing — to stay in the desired state, you are constantly trying to hit a moving target.

To perform Application Resource Management, Turbonomic models the environment as a market made up of buyers and sellers. These buyers and sellers make up a supply chain that represents tiers of entities in your inventory. This supply chain represents the flow of resources from the datacenter, through the physical tiers of your environment, into the virtual tier and out to the cloud. By managing relationships between these buyers and sellers, Turbonomic provides closed-loop management of resources, from the datacenter, through to the application.

See the [The Supply Chain (on page 38)] for a visual layout of the buyer and seller relationships.

Turbonomic uses Virtual Currency to give a budget to buyers and assign cost to resources. This virtual currency assigns value across all tiers of your environment, making it possible to compare the cost of application transactions with the cost of space on a disk or physical space in a data center.

The price that a seller charges for a resource changes according to the seller’s supply. As demand increases, prices increase. As prices change, buyers and sellers react. Buyers are free to look for other sellers that offer a better price, and sellers can duplicate themselves (open new storefronts) to meet increasing demand. Turbonomic uses its Economic Scheduling Engine to analyze the market and make these decisions. The effect is an invisible hand that dynamically guides your IT infrastructure to the optimal use of resources.

To get the most out of Turbonomic, you should understand how it models your environment, the kind of analysis it performs, and the desired state it works to achieve.

The Desired State

![Graph showing the desired state](image)

The goal of Application Resource Management is to assure performance while maintaining efficient use of resources. When performance and efficiency are both maintained, the environment is in the desired state. You can measure performance as a function of delay, where zero delay gives the ideal QoS for a given service. Efficient use of resources is a function of utilization where 100% utilization of a resource is the ideal for the most efficient utilization.

If you plot delay and utilization, the result is a curve that shows a correlation between utilization and delay. Up to a point, as you increase utilization, the increase in delay is slight. There comes a point on the curve where a slight increase in utilization results in an unacceptable increase in delay. On the other hand, there is a point in the curve where a
Introducing Turbonomic

reduction in utilization doesn’t yield a meaningful increase in QoS. The desired state lies within these points on the curve.

You could set a threshold to post an alert whenever the upper limit is crossed. In that case, you would never react to a problem until delay has already become unacceptable. To avoid that late reaction you could set the threshold to post an alert before the upper limit is crossed. In that case, you guarantee QoS at the cost of over-provisioning — you increase operating costs and never achieve efficient utilization.

Instead of responding after a threshold is crossed, Turbonomic analyzes the operating conditions and constantly recommends actions to keep the entire environment within the desired state. If you execute these actions (or let Turbonomic execute them for you), the environment will maintain operating conditions that assure performance for your customers, while ensuring the lowest possible cost thanks to efficient utilization of your resources.

The Market and Virtual Currency

To perform Application Resource Management, Turbonomic models the environment as a market, and uses market analysis to manage resource supply and demand. For example, bottlenecks form when local workload demand exceeds the local capacity — in other words, when demand exceeds supply. By modeling the environment as a market, Turbonomic can use economic solutions to efficiently redistribute the demand or increase the supply.

Turbonomic uses two sets of abstraction to model the environment:

- Modeling the physical and virtual IT stack as a service supply chain

 The supply chain models your environment as a set of managed entities. These include applications, VMs, hosts, storage, containers, availability zones (cloud), and data centers. Every entity is a buyer, a seller, or both. A host machine buys physical space, power, and cooling from a data center. The host sells resources such as CPU cycles and memory to VMs. In turn, VMs buy host services, and then sell their resources (VMem and VCPU) to containers, which then sell resources to applications.

 See the The Supply Chain (on page 38) for a visual layout of the buyer and seller relationships.

- Using virtual currency to represent delay or QoS degradation, and to manage the supply and demand of services along the modeled supply chain

 The system uses virtual currency to value these buy/sell transactions. Each managed entity has a running budget — the entity adds to its budget by providing resources to consumers, and the entity draws from its budget to pay for the resources it consumes. The price of a resource is driven by its utilization — the more demand for a resource, the higher its price.
Introducing Turbonomic

These abstractions open the whole spectrum of the environment to a single mode of analysis — market analysis. Resources and services can be priced to reflect changes in supply and demand, and pricing can drive resource allocation decisions. For example, a bottleneck (excess demand over supply) results in rising prices for the given resource. Applications competing for the same resource can lower their costs by shifting their workloads to other resource suppliers. As a result, utilization for that resource evens out across the environment and the bottleneck is resolved.

Risk Index

Turbonomic tracks prices for resources in terms of the Risk Index. The higher this index for a resource, the more heavily the resource is utilized, the greater the delay for consumers of that resource, and the greater the risk to your QoS. Turbonomic constantly works to keep the Risk Index within acceptable bounds.

You can think of Risk Index as the cost for a resource — Turbonomic works to keep the cost at a competitive level. This is not simply a matter of responding to threshold conditions. Turbonomic analyzes the full range of buyer/seller relationships, and each buyer constantly seeks out the most economical transaction that is available.

This last point is crucial to understanding Turbonomic. The virtual environment is dynamic, with constant changes to workload that correspond with the varying requests your customers make of your applications and services. By examining each buyer/seller relationship, Turbonomic arrives at the optimal workload distribution for the current state of the environment. In this way, it constantly drives your environment toward the desired state.
NOTE:
The default Turbonomic configuration is ready to use in many environments. However, you can fine-tune the configuration to address special services and resources in your environment. Turbonomic provides a full range of policies that you can set to control how the software manages specific groups of entities. Before you make such policy changes, you should understand default Turbonomic operation. For more information about policies, see Working With Policies (on page 214).

The Turbonomic Supply Chain
Turbonomic models your environment as a market of buyers and sellers. It discovers different types of entities in your environment via the targets you have added, and then maps these entities to the supply chain to manage the workloads they support. For example, for a hypervisor target, Turbonomic discovers VMs, the hosts and datastores that provide resources to the VMs, and the applications that use VM resources. For a Kubernetes target, it discovers services, namespaces, containers, container pods, and nodes. The entities in your environment form a chain of supply and demand where some entities provide resources while others consume the supplied resources. Turbonomic stitches these entities together, for example, by connecting the discovered Kubernetes nodes with the discovered VMs in vCenter.

For information about specific members of the supply chain, see The Supply Chain (on page 38).

Supply Chain Terminology
Turbonomic introduces specific terms to express IT resources and utilization in terms of supply and demand. These terms are largely intuitive, but you should understand how they relate to the issues and activities that are common for IT management.

<table>
<thead>
<tr>
<th>Term:</th>
<th>Definition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity</td>
<td>The basic building block of Turbonomic supply and demand. All the resources that Turbonomic monitors are commodities. For example, the CPU capacity or memory that a host can provide are commodities. Turbonomic can also represent clusters and segments as commodities. When the user interface shows commodities, it’s showing the resources a service provides. When the interface shows commodities bought, it’s showing what that service consumes.</td>
</tr>
<tr>
<td>Composed Of</td>
<td>The resources or commodities that make up the given service. For example, in the user interface you might see that a certain VM is composed of commodities such as one or more physical CPUs, an Ethernet interface, and physical memory. Contrast Composed Of with Consumes, where consumption refers to the commodities the VM has bought. Also contrast Composed Of with the commodities a service offers for sale. A host might include four CPUs in its composition, but it offers CPU Cycles as a single commodity.</td>
</tr>
<tr>
<td>Consumes</td>
<td>The services and commodities a service has bought. A service consumes other commodities. For example, a VM consumes the commodities offered by a host, and an application consumes commodities from one or more VMs. In the user interface you can explore the services that provide the commodities the current service consumes.</td>
</tr>
</tbody>
</table>
Turbonomic Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity</td>
<td>A buyer or seller in the market. For example, a VM or a datastore is an entity.</td>
</tr>
<tr>
<td>Environment</td>
<td>The totality of data center, network, host, storage, VM, and application resources that you are monitoring.</td>
</tr>
<tr>
<td>Inventory</td>
<td>The list of all entities in your environment.</td>
</tr>
<tr>
<td>Risk Index</td>
<td>A measure of the risk to Quality of Service (QoS) that a consumer will experience. The higher the Risk Index on a provider, the more risk to QoS for any consumer of that provider’s services. For example, a host provides resources to one or more VMs. The higher the Risk Index on the provider, the more likely that the VMs will experience QoS degradation. In most cases, for optimal operation the Risk Index on a provider should not go into double digits.</td>
</tr>
</tbody>
</table>

Turbonomic Targets

You can assign instances of the following technologies as Turbonomic targets:

- **Hypervisors**
 - VMware vCenter 5.1, 5.5, 6.0, 6.5, and 6.7
 - Microsoft Hyper-V 2008 R2, Hyper-V 2012, and Hyper-V 2012 R2
- **Cloud Managers**
 - Amazon AWS
 - Microsoft Azure
 - Microsoft Enterprise Agreement
 - Microsoft System Center 2012 Virtual Machine Manager and System Center 2012 R2 Virtual Machine Manager
- **Billing Targets**
 - Amazon AWS Billing
- **Storage Managers**
 - Pure Storage F-series and M-series arrays
 - NetApp Cmode/7mode using ONTAP 8.0+ (excluding AFF and SolidFire)
 - EMC VMAX using SMI-S 8.1+
 - EMC ScaleIO 2.x and 3.x
 - HPE 3PAR InForm OS 3.2.2+, 3PAR SMI-S, 3PAR WSAPI
- **Fabric Managers**
 - Cisco UCS Manager 3.1+
 - HPE OneView 3.00.04+
- **Guest OS Processes**
 - AppDynamics 4.1+
 - AppDynamics and Kubernetes
Introducing Turbonomic

- DynaTrace 1.1+
- DynaTrace and Kubernetes
- SNMP

- WMI Probe Supported Systems
 - Windows 2019
 - Windows 2016
 - Windows 2012 / 2012 R2
 - Windows 2008 R2
 - Windows 10
 - Windows 8 / 8.1
 - Windows 7

- PaaS Targets
 - OpenShift 3.3+
 - Kubernetes

- Orchestrator Targets
 - Action Script

The following sections describe these targets. For information about assigning targets to Turbonomic, see the Target Configuration Guide.

Hypervisors

Turbonomic can use a range of VM managers as targets. For general discussion, this document refers to the various supported VM managers as hypervisors.

Turbonomic supports the following hypervisor targets:

- Microsoft Hyper-V
- VMware vCenter

Turbonomic uses hypervisor targets to access information about the managed VMs, hosts, and datastores, and also to execute commands such as provisioning, resizing, or reconfiguring entities in the environment. Through the hypervisor, Turbonomic can perform system monitoring, report on wasted storage, recommend actions, execute moves for VMs and VM storage, and execute VM reconfiguration (change CPU count, memory, etc.).

The entities Turbonomic discovers through hypervisor targets include:

- VMs
- Physical machines that host VMs
- Datastores that support the VMs
- Datacenters

Cloud Managers

Cloud Managers provide a layer of control to deliver virtual infrastructures that can be deployed automatically, or in a self-service offering to customers. They define and manage virtual datacenters (VDCs) — provider VDCs to manage the
physical and virtual resources that support the cloud offering, and consumer VDCs that present limited resources to customers.

Turbonomic supports the following cloud manager targets:

- Microsoft Virtual Machine Manager (VMM)

Turbonomic has visibility into the full VDC chain, from the resources provided by the underlying hosts and physical datastores, through the resources consumed by a provider VDC, to the resources consumed by VMs hosted on a consumer VDC.

You can create special Turbonomic user accounts for consumer VDC customers. Such an account has a limited scope, and the user cannot see any of the resources outside of that scope. In this way, you can offer Turbonomic to cloud customers without exposing any proprietary infrastructure data to them. For more information, see Managing User Accounts (on page 294).

The entities Turbonomic discovers through cloud manager targets include:

- Consumer VDCs
 Virtual resources that are available to customers.
- Provider VDCs
 Physical resources that provide the infrastructure to support Consumer VDCs.

Storage Managers

Storage managers provide management and distribution of data storage across disk arrays. Storage managers can support thin provisioning, deduplication, and HA architectures. Turbonomic monitors resource utilization across the storage system to optimize placement and provisioning of volumes and disk arrays, as well as management of storage controller resources.

Turbonomic supports the following storage manager targets:

- NetApp Storage Systems running Data ONTAP version 8 or later
 The actions Turbonomic can recommend and perform are different for systems running in 7-Mode or Cluster-Mode.
- EMC VNX Series Storage Systems — for version details, see the EMC VNX Support KB article.

The entities Turbonomic discovers through storage manager targets include:

- Storage Controllers (NetApp controllers/filers, VNX processors)
- Disk Arrays (aggregates, clustered aggregates, storage pools, RAID groups)
- Datastores (volumes or LUNs)

Fabric Managers

Fabric managers provide a point of control for fabrics that unify compute, network, storage, and virtual resources within a single system.

Turbonomic supports the following fabric manager targets:

- Cisco UCS Fabric Manager

The entities Turbonomic discovers through fabric managers targets include:

- UCS Domains
Resource Descriptions

To perform intelligent workload balancing, Turbonomic collects raw data from its target servers – hypervisors, cloud management stacks, public cloud accounts, etc. Turbonomic polls its targets at 10-minute intervals to collect the latest data samples. It then uses these 10-minute data points for analysis and to display data in the GUI.

The way Turbonomic collects host memory data from vCenter Server illustrates how this works. vCenter Server collects peak metrics from its managed VMs at 20-second intervals. Every ten minutes Turbonomic polls vCenter Server to collect its last round of data samples (30 samples in 10 minutes). To track a VM’s utilization of host memory, Turbonomic requests `memory.active` data samples from vCenter. From that polling, Turbonomic can track:

- Peak Memory Utilization - Turbonomic uses the greatest value in each polling sample. This gives the highest percentage of active memory utilization for the selected VM (or group of VMs), calculated over the selected time period. For a maximum value, Turbonomic uses the highest observed active memory value in the data sample.
- Average Memory Utilization - Turbonomic averages all the values in each polling sample.

The following table lists the metrics Turbonomic collects, and includes details about how they are collected or measured. When the Turbonomic user interface plots charts of clusters or groups of devices, these charts show the average of the percentage of allocated resources that are used.

<table>
<thead>
<tr>
<th>Resource:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- 2- 4-CPU Rdy</td>
<td>Wait time in the ready queue on the host, measured in ms. Turbonomic monitors 1-CPU, 2-CPU, 4-CPU, up to 32-CPU ready queues on hosts. Charts show 1 - 4 CPU values. The charts show the percentage allocated ready queue capacity that is in use on the host. For host charts, this is a measure of the total ready queue wait time for all the VMs running on that host.</td>
</tr>
<tr>
<td>Balloon</td>
<td>Ballooning capacity on the PM, measured in KBytes. This capacity is the greater of:</td>
</tr>
<tr>
<td></td>
<td>• 65% of the VMem configured for all powered-on VMs that the PM hosts</td>
</tr>
<tr>
<td></td>
<td>• The physical memory capacity of the PM</td>
</tr>
<tr>
<td></td>
<td>Charts show the percentage of the PM’s ballooning capacity that is in use.</td>
</tr>
<tr>
<td>Buffer</td>
<td>For network environments that support buffered switch ports (Arista networks), this resource measures utilization of a port buffer. For example, if a host connects to the network through port 1 on a switch, and that port has enough traffic to cause packet buffering, this resource will show utilization.</td>
</tr>
<tr>
<td>Connection</td>
<td>The connections in use, as a percentage of the maximum connections allowed on the database. Database configuration determines the capacity for this resource.</td>
</tr>
<tr>
<td>Cooling</td>
<td>Allocated cooling indicates the highest acceptable running temperature for a physical device, such as a chassis in a compute fabric.</td>
</tr>
<tr>
<td>Resource:</td>
<td>Description:</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| CPU | Host CPU capacity, measured in MHz. This shows what percentage of CPU cycles are devoted to processing instructions.
• Host charts show the percentage of the host’s CPU capacity that is in use.
• VM charts show the percentage of the host’s CPU capacity that is consumed by the given VM. |
| DBMem | The memory in use by the database, as a percentage of the allocated capacity. Database configuration determines the capacity for this resource. Note that for databases, Turbonomic uses this resource to drive actions, instead of the VMem on the hosting VM. This means that actions are driven by the actual memory consumption on the database. |
| Flow0 — InProvider Flow | For measuring network flow, the flow that is within a single provider — For example, the network flow between VMs that are hosted by the same physical machine. This measures network flow between consumers that are on the same set of closely connected providers. Charts show the percentage of capacity that is utilized. Note that Turbonomic assumes an unlimited supply of InProvider Flow because this flow does not go across the physical network. |
| Flow1 — InDPOD Flow | For measuring network flow, the flow that is local to the given DPOD. This measures network flow between consumers that are on the same set of closely connected providers. Charts show the percentage of capacity that is utilized. |
| Flow2 — CrossDPOD Flow | For measuring network flow, the flow that is between different DPODs. This measures network flow between consumers that are on different sets of closely connected providers. Charts show the percentage of capacity that is utilized. |
| Heap | The heap capacity allocated for an application. Charts show the percentage of capacity that is used by an application. |
| HotStorage | For Nutanix platforms, the storage capacity on the server-attached flash. |
| HotStorage | Data rate through the host’s IO adapter, measured in KBytes/sec.
• Datacenter charts show the average percentage of the host IO capacity that is in use, for all the hosts in the datacenter.
• Host charts show the percentage of the host’s total IO capacity that is in use. |
| IOPS | Storage access operations per second. Charts show the percentage of allocated IOPS capacity that is used on a datastore. |
| Latency | Allocated capacity for latency on a datastore. This measures the latency experienced by all VMs and hosts that access the datastore. Charts show the percentage of allocated latency that is in use on the datastore. |
| Mem | Host memory, measured in Kbytes.
• Host charts show the percentage of the host’s memory that is in use.
• VM charts show the percentage of the host’s memory that is consumed by the given VM. |
| NET | Data rate through the host’s Network adapter, measured in Kbytes/sec.
• Datacenter charts show the average percentage of the host NET capacity that is used for all the hosts in the datacenter. |
<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host charts</td>
<td>Show the percentage of the host’s total NET capacity that is in use.</td>
</tr>
<tr>
<td>nfu (AWS only)</td>
<td>Normalized Factor Unit.</td>
</tr>
<tr>
<td></td>
<td>For RIs in AWS environments, the nfu is a measure of RI capacity that you can use to compare or combine the capacity for different template families. For example, the normalized factors for some template families include:</td>
</tr>
<tr>
<td></td>
<td>• nano: 0.25</td>
</tr>
<tr>
<td></td>
<td>• micro: 0.5</td>
</tr>
<tr>
<td></td>
<td>• small: 1</td>
</tr>
<tr>
<td></td>
<td>• medium: 2</td>
</tr>
<tr>
<td></td>
<td>• large: 4</td>
</tr>
<tr>
<td></td>
<td>Turbonomic measures RI utilization and coverage in terms of these normalized factors.</td>
</tr>
<tr>
<td>Power</td>
<td>A measure of the power that is consumed by a physical device.</td>
</tr>
<tr>
<td>RI ratio (Azure only)</td>
<td>For Azure environments, RI ratio is the number of RI units compared to the total number of RI units for a given Turbonomic scope. Each workload is assigned RI units based on its instance type. For example, here are some instance types with RI units:</td>
</tr>
<tr>
<td></td>
<td>• Standard_DS2_v2: 1</td>
</tr>
<tr>
<td></td>
<td>• Standard_B2ms: 3</td>
</tr>
<tr>
<td></td>
<td>RI ratio information appears in the tooltips of cloud RI charts. Information about the Azure instance types and their RI workloads is provided in the RI Inventory chart. Azure RI ratio and AWS NFU are equivalent concepts.</td>
</tr>
<tr>
<td>Swap</td>
<td>The rate of memory swapping to disk, in bytes per second. The default capacity is 5,000,000 Byte/sec.</td>
</tr>
<tr>
<td>Threads</td>
<td>Allocated thread capacity. Charts show the percentage of thread capacity that is consumed by an application server.</td>
</tr>
<tr>
<td>TransactionLog</td>
<td>The disk space devoted to transaction logging for a database.</td>
</tr>
<tr>
<td>Transactions</td>
<td>Transactions per second in an application. Charts show the percentage of an application’s allocated transaction capacity that is in use.</td>
</tr>
<tr>
<td>Risk Index</td>
<td>A measure of the impact on Quality of Service (QoS) that a consumer will experience. The higher the Risk Index on a provider, the more risk to QoS for any consumer of that provider’s services. For all the resources that impact performance or risk, charts show the Risk Index for the most utilized resource of a given entity. For example, if a host has a Risk Index of 6 for MEM and 12 for CPU, the chart will show the higher value.</td>
</tr>
<tr>
<td>VCPU</td>
<td>The CPU capacity allocated to a VM guest OS, measured in MHz. Charts show the percentage of a VM’s VCPU cycles that are devoted to processing instructions.</td>
</tr>
<tr>
<td>VMem</td>
<td>The memory allocated to a VM guest OS, measured in Kbytes. Charts show the percentage of a VM’s allocated VMem that is in use.</td>
</tr>
<tr>
<td>Resource</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>resource</td>
<td>Note that percentages of allocated VMem are measured against whichever is the less of: The VMem limit (if set) or the allocated VMem capacity. This is also true in reports and recommended actions. For example, assume a VM with allocated VMem of 8 GB, but a limit of 4 GB. In this case, the percentage in a chart shows the percentage utilized of 4 GB.</td>
</tr>
<tr>
<td>VStorage</td>
<td>Virtual storage allocated to a VM, measured in Kbytes. Charts show the percentage of a VM's allocated VStorage that is in use.</td>
</tr>
</tbody>
</table>
Logging In to Turbonomic

To get started with the platform, open a web browser to your Turbonomic installation. The Turbonomic platform serves the user interface to your browser, where you can log in and get started managing your environment. In this way, you can access the unique capabilities of Turbonomic from any internet connection.

Before you can log in, your enterprise must have a valid Turbonomic account, or an instance of Turbonomic must be installed in your environment. To get the IP address of your Turbonomic installation, contact your system administrator.

To log in to Turbonomic:

1. Navigate your Web browser to the Turbonomic installation.
 For the URL, provide the IP address or machine name for the installation. This URL opens the Turbonomic Login page. You should bookmark this URL for future use.
2. Provide the user name and password for your account.
 Your system administrator creates user accounts. Contact your system administrator for login information.

After you log in, the browser opens to the [Home Page (on page 29)]. This page is your starting point for sessions with the Turbonomic platform. From the Home Page you can see the overviews of your environment.

To display this information, Turbonomic communicates with target services such as hypervisors, storage controllers, and public cloud accounts. Note that your Turbonomic administrator sets up the target configuration. For information about supported targets and how to configure them, see "Target Configuration" in the Target Configuration Guide.
The Home Page

When you launch Turbonomic, the **Home Page** is the first view you see. From there you can:

- **Choose a View** to see overviews of your environment:
 - HYBRID – See all the actions that are pending for the entire environment, both on-prem and in the cloud.
 - ON-PREM – See details for the on-prem environment. Notice that the Supply Chain excludes cloud entities and only shows the entities that are on-prem.
 - CLOUD – See details for the cloud environment, including pending actions, a listing of your cloud accounts by cost, the locations of cloud datacenters that you are using, estimated costs, and other cost-related information.

If you want to set a View as your favorite view, choose HYBRID, ON-PREM, or CLOUD and click the Star icon. Then, Turbonomic displays that view by default when you navigate to the **Home Page**.

- **Use the Supply Chain Navigator to inspect lists of entities**
 - Click an entity tier in the Supply Chain to see a list of those entities. For example, click Virtual Machine to see a list of all the VMs in your environment.
The Home Page

• Navigate to other Turbonomic pages, including:
 ◦ Search – Set the session scope to drill down to details about your environment
 ◦ Plan – Run what-if scenarios or plan migrations to the cloud
 ◦ Place – Use Turbonomic to calculate the best placement for workloads, and execute the placement at the time you specify
 ◦ Dashboards – Set up custom views with charts that focus on specifics in your environment
 ◦ Reports – Generate reports and manage subscriptions to those reports
 ◦ Settings – Configure Turbonomic to set up business rules and policies, configure targets, define groups, and perform other administrative tasks

Getting Home

Wherever you are in your Turbonomic session, you can always click the Home icon to return to the Home Page.

Hybrid View

When you set your session to the Global Scope, you can then select the HYBRID view. This shows all the actions that are pending for the entire environment, both on-prem and in the cloud.

Because this view shows both the on-prem and cloud aspects of your environment, it displays only those charts with data common to both. You can see information about actions, including:

• Lists of pending actions
• Overviews of pending actions
 If you have pending actions in the public cloud, the overview includes the estimated monthly savings or cost associated with those actions. For on-prem actions, the overview can include estimated one-time savings or cost.
• Action history – You can see a history of all actions that have been recommended and executed, or of just the actions that have been accepted and executed.

To see complete lists of pending actions, click the SHOW ALL link at the bottom of the Pending Actions chart.
ON-PREM View

When you set your session to the Global Scope, you can then select the ON-PREM view. This shows an overview of your on-prem environment. If you don't have any workload on the public cloud, then you should use this as your starting point for a Turbonomic session. If you have a hybrid environment (on-prem and on the public cloud), then you can refer to this view to see a detailed on-prem overview.
The Home Page

The Supply Chain shows all the on-prem entities in your environment. The charts show details about your environment, including:

- **Overviews of pending actions**

 When appropriate, the overview includes estimated one-time savings or costs associated with the actions.

- **Action history**

 You can see a history of all actions that have been recommended and executed, or of just the actions that have been accepted and executed.

- **Top Cluster utilization**

 See a list of the most utilized clusters. The chart shows these clusters, along with a count of actions for each. To drill down into the cluster details, click the cluster name. To see and execute the specific actions, click the ACTIONS button for that cluster. To see all the clusters in your environment, click SHOW ALL.

- **Necessary Investments and Potential Savings**

 For the current set of pending actions, these charts show the impact in dollar value. Necessary Investments are from actions to provision more workloads or to resize workloads up. Potential Savings are from actions to resize down or to suspend hosts.

- **Optimized Improvements**

 Compare current resource utilization with the utilization you would see if you choose to execute all the pending actions.

- **Headroom**

 See how many more workloads can run on your current infrastructure while maintaining performance.

- **Risk Index**

 This chart indicates the overall health of your environment over time. The Risk Index shows whether your environment is keeping in a healthy state, or whether it's on a trend toward overutilization or underutilization of resources.
CLOUD View

When you set your session to the Global Scope, you can then select the CLOUD view. This shows an overview of your cloud environment. If all your workload is on the public cloud, then you should use this as your starting point for a Turbonomic session. If you have a hybrid environment (on-prem and on the public cloud), then you can refer to this view to see a detailed cloud overview.

To view cloud cost information, you must have one or more public cloud targets set up in your Turbonomic installation. For information about setting up public cloud targets, see "Private Cloud" in the Target Configuration Guide.

In addition, to view full cost information in AWS, you must have created a Cost and Usage report in your AWS account and you must store it in an S3 bucket.

For more information, see Displaying AWS Spend In Turbonomic.

In this view, the Supply Chain shows all the cloud entities in your environment. The charts show details about your cloud environment, including:

- Overviews of pending actions
 The overview includes the estimated monthly savings or cost associated with those actions.
- Top Accounts utilization
 See a list of the most utilized public cloud accounts. The chart shows these accounts, along with an estimate of the monthly cost for each. To see all the cloud accounts in your environment, click SHOW ALL.
- Necessary Investments and Potential Savings
 For the current set of pending actions, these charts show the impact in dollar value. Necessary Investments are from actions to provision more workloads or to resize workloads up. Potential Savings are from actions to resize down, or to purchase RI resources and put them into active use.
- Cloud Cost Comparison
 Cloud Cost Comparison charts compare public cloud costs before and after actions are executed, and show the resulting savings. You can also see workloads according to the types of actions that are pending for them.
For example, you might see actions that address performance risks in undersized VMs or introduce efficiency opportunities in oversized VMs. For undersized VMs, costs should go up; for oversized VMs, costs should go down.

- Charts that show your current Reserved Instance strategy:
 - Recommended RI Purchases shows the projected inventory of pending Reserved Instance purchases.
 - RI Coverage compares the capacity of your current VM workload to the capacity of workload that is covered by Reserved Instances.
 - RI Inventory shows the RI workloads that Turbonomic discovers and lists them by templates.
 - RI Utilization shows how well you have utilized the reservation inventory. The chart compares the capacity for all reservations versus the RI consumption by virtual machines.

- Location
 This chart shows the locations of your cloud accounts' regions or zones on a map. Hover on a data point to see the region or zone name. Click a region to set the view’s scope.

- Workload Cost Breakdown
 This chart shows the costs of your workloads in the public cloud environment.

- All Actions
 You can see a history of actions that have been recommended and executed, or of just the actions that have been accepted and executed.

- Cost Breakdown by Cloud Account
 This chart shows costs over time for each account that you have set up as a target in Turbonomic.

- Billed Cost by Service
 This chart shows costs over time for each cloud service that you use in your cloud accounts. For example, you can see the cost for AWS CloudWatch, compared to the cost for AWS S3 storage.

- Cost Breakdown by Cloud Service Provider
 This chart shows costs over time for each cloud service provider.

Tracking Cloud Cost

Cost for Services

Turbonomic uses the billing reports from your cloud service providers, as they are associated with your cloud targets. Turbonomic parses these reports to get cost breakdowns by service, service provider, Azure Resource Group, and cloud account. You can see cost data in charts such as:

- Cloud Estimated Cost
- Cost Breakdown by Cloud Accounts, Component, or Service Provider
- Cloud Cost Comparison
- Expenses
Workload Expenses

Workloads are the VMs running in your environment, or other hosted processes such as database servers, application servers, or containers. Turbonomic tracks the following expenses for your workloads:

- **Compute**
 For compute expenses Turbonomic uses hourly expense per template as specified in the associated public cloud account.

- **Storage**
 Turbonomic discovers the storage tier that supports a given workload, and uses the tier pricing to calculate storage cost.

- **License**
 For AWS environments, Turbonomic can calculate OS costs. To calculate the OS cost for a VM, Turbonomic subtracts the template cost from the published workload cost. It assumes the difference is the license cost for that workload. If the OS is open source, then there will be no difference, and license cost is zero.

- **IP**
 For some workloads, you might use IP services that incur a cost. For example, your cloud provider might charge to grant a static IP to a VM. On AWS environments Turbonomic can include that cost in its calculation and analysis.

Turbonomic uses this cost information when making VM resize and placement decisions. You can see this information in Expenses charts.

Costs for Dedicated Tenancy on AWS

When you create VMs on AWS, you can specify their tenancy. When you specify Dedicated Tenancy (DT), the VMs you create are Amazon EC2 instances running on hardware that is dedicated to a single customer. To understand DT in the context of Turbonomic, you should consider:

- **For AWS, the Turbonomic supply chain shows an Availability Zone as a Host. The supply chain does not indicate whether certain VMs have tenancy dedicated to specific resources in the given availability zone. Also, Turbonomic does not discover or show the costs for dedicated hosting of your workloads.**

- **Pricing for DT workloads is different than pricing for Shared Tenancy. Turbonomic does not discover that difference, and uses Shared Tenancy cost for the DT workloads. In action descriptions, the listed savings or investments will be based on Shared Tenancy costs.**

- **Turbonomic discovers the true costs of RIs for DT workloads. However, because the on-demand VM costs are based on Shared Tenancy, Turbonomic can overstate the savings you would get for purchasing and using RI capacity. In most cases, recommendations to purchase RIs will be correct. However, the time to achieve ROI could take longer than action descriptions and charts indicate.**

- **Some instance types that are valid for Shared Tenancy are not valid for DT. To see which instance types are valid for your DT VMs, consult the AWS documentation or your AWS representative.**

- **Under some circumstances Turbonomic can recommend changing a workload to a valid instance type for the tenant, even though the current type is already valid. This can happen when the instance type is not included in the Offer File for the tenancy. For example, assume the t3a template family does not support dedicated tenancy. However, assume that the user created a t3a instance with dedicated tenancy in the EC2 console. In that case, Turbonomic will see this as a misconfiguration and recommend changing to a different instance type.**

To address these issues, you can create groups that set a scope to your DT workloads. For example, you can use naming conventions, tagging, or other means to identify your DT workloads. Then you can create dynamic groups based on
those indicators. With those groups, you can create policies and dashboards that correspond to the differences you see in your DT environment. Use this approach to address issues for:

- **Available Instance Types**
 To resize a workload, Turbonomic generates an action to change that workload to a different instance type. Because Turbonomic does not discover the difference between instance types that are valid for DT and for Shared Tenancy, it can recommend scaling a DT workload to an unavailable instance type. To avoid this, create a policy for the DT group, and exclude the unavailable instance types.

- **Displaying Costs**
 Turbonomic charts (such as the Cloud Cost Comparison and RI Inventory charts) show the costs for your environment. If the scope includes Dedicated Tenancy workloads, then the calculated cost will be incomplete. For example, since AWS does not return pricing data for converted RIs (that is, RIs that have been exchanged at least once) that are on All Upfront payment plans, Turbonomic does not include such RIs in its calculations of RI utilization or cost.

 Use scope to minimize this effect. You can create separate dashboards for your DT and Shared Tenancy workloads.

Resizing Cloud Workloads

To resize a workload (for example, a VM or an RDS instance) on the cloud, Turbonomic chooses the cloud tier that best matches the workload requirements. This can be to reduce cost by choosing a smaller tier, or it can be to assure performance by choosing a larger tier. To accomplish the resize, Turbonomic actually moves the workload to the new tier. This can include moving to a new availability zone.

Note that resize decisions also take into account the discount you can realize by using RI purchases. Turbonomic can recommend to purchase more RI resources. When considering workload resize actions, Turbonomic can recommend resizing to a larger RI tier because the overall cost will be less.

As it considers a resize, Turbonomic also considers the storage and network requirements. Even if the compute resources are underutilized on a workload, if the available tiers cannot support the workload’s storage or network requirements then Turbonomic will not recommend the change.

NOTE:

In AWS environments, under certain circumstances VM resizing can fail. If the restart of the VM initially fails, Turbonomic waits 30 seconds and tries to restart again. Turbonomic will try to restart up to four times. If the restart still fails, Turbonomic assumes the VM cannot start up on the new tier, and it restarts the VM on the old tier.

Scaling on the Public Cloud

On the cloud, scaling actions change the VM to a different instance type. These can include:

- Changing a VM to an instance type with different capacity
- Changing on-demand to RI

For these actions, the action list shows the current cost for the source workload, and also the projected cost given the change. To show the current cost, Turbonomic uses the actual costs for that workload. However, to show the projected cost it uses an estimate based on average utilization for the VM, for the costs of the given tier.

Note that scaling to an RI can result in running the VM on a larger instance when the cost is lower. This might occur even though the VM does not need that capacity and there are other smaller tiers available.
In Azure environments, there are circumstances where a VM resize can be especially disruptive. In a given region, the infrastructure can be made up of different clusters that have different sets of underlying hardware. Further, some tiers that are available in the given region are only available on different clusters. If Turbonomic recommends resizing from a tier on one cluster, to a tier on another cluster, then the resize action can take longer to complete than usual.

In both Azure and AWS environments, Turbonomic conforms to specific instance requirements as it generates resize actions. For more information, see:

- Azure Instance Requirements *(on page 61)*
- AWS Instance Requirements *(on page 62)*

Reserved Instances (RIs)

Turbonomic analysis takes advantage of AWS and Azure Reserved Instances (RIs) to calculate optimal workload placement and to arrive at the best possible costs for your deployments on the cloud. The Cloud View includes charts that illustrate this:

- **Pending Actions *(on page 166)***
 If Turbonomic has found actions you can take to improve performance or to reduce cost, then you can see an overview of them in the Pending Actions chart. To see a listing of the specific actions, click Show All at the bottom of the chart. For more about actions, see *Turbonomic Actions *(on page 93)*.*

- **RI Utilization *(on page 193)***
 This chart shows how well you have utilized the Reserved Instance inventory. The chart compares the capacity for all Reserved Instances versus the RI consumption by virtual machines.

- **RI Coverage *(on page 192)***
 This chart compares the capacity of your current VM workload to the capacity of workload that is covered by RIs. If you have a high percentage of on-demand workload, then you should be able to reduce your monthly costs by increasing RI coverage. To increase coverage, you resize workloads to instance types that have existing RI capacity. If you need more RI capacity, then Turbonomic will recommend the RIs that you should buy.

- **RI Inventory *(on page 188)***
 This chart lists the RI instance types that are active in your inventory. To see more information, click Show All at the bottom of the chart.

- **Recommended RI Purchases *(on page 190)***
 This chart shows the projected inventory of pending RI purchases as generated by Turbonomic. To see more information, click Show All at the bottom of the chart.

Turbonomic can recommend that you purchase RI capacity to reduce costs for your current workload. If a workload shows stable utilization over time, then Turbonomic identifies it as an RI candidate, and it recommends purchasing RI capacity for that workload. To ensure enough historical data for the analysis, Turbonomic generates RI Buy actions on a two-week cycle. It also generates a new set of RI Buy actions if you change the RI inventory, or if you restart Turbonomic.

For more information about analysis for RI Buy actions, see *Start/Buy *(on page 98)*.*

NOTE:
Turbonomic can only estimate the cost that would result if you execute pending RI Buy actions. This is because the full data is only available after you actually purchase the RIs. Estimates reflect costs you would see after scaling workloads to the newly purchased RI capacity. For scaling to already-purchased RIs, the chart reflects the actual costs.
Supply Chain of Entities

To perform Application Resource Management, Turbonomic models your environment as a market of buyers and sellers linked together in a supply chain. This supply chain represents the flow of resources from the datacenter, through the physical tiers of your environment, into the virtual tier and out to the cloud. By managing relationships between these buyers and sellers, Turbonomic provides closed-loop management of resources, from the datacenter, through to the application.
Reading the Supply Chain

By looking at the Supply Chain, you can see:

- How many entities you have on each tier

 Each entry in the supply chain gives a count of entities for the given type.

- The overall health of entities in each tier

 The ring for each entry indicates the percentage of pending actions for that tier in the datacenter. Ring colors indicate how critical the actions are - Green shows the percentage of entities that have no actions pending. To get actual counts of pending actions, hover on a ring to more details.

- The flow of resources between tiers

 The arrow from one entry to another indicates the flow of resources. For example, the Virtual Machine entry has arrows to Physical Machine and to Storage. If the VMs are running in a Virtual Data Center, it will have another arrow to that as well. This means that your VMs consume resources from PMs, storage, and possible from VDCs.

Listing Entities From the Home Page

The Supply Chain shows the relationships of entities in your environment. When you're on the Home Page with a global scope, the supply chain filters its display according to the view you have chosen:

- HYBRID view – All the entities in your environment
- ON-PREM – All your on-prem entities
- CLOUD – All your entities on the public cloud

To see a list of entities, click an entity tier in the Supply Chain.
Supply Chain Entity Types

The Turbonomic user interface displays the following entity types in the supply chain:

- Application Server (on page 43)
- Application (on page 45)
- Business Application (on page 47)
- Database Server (on page 49)
- Container (on page 51)
- ContainerPod (on page 53)
- Virtual Machine (on page 59)
- Virtual Datacenter (on page 64)
- Host (on page 68)
- Storage (on page 72)
- Disk Array (on page 74)
- Storage Controller (on page 76)
- IO Module (on page 77)
- Fabric Interconnect (on page 78)
- Chassis (on page 78)
- Datacenter (on page 79)
- Zone (on page 81)
- Region (on page 81)
Supply Chain - Load Balancer

An Application Load Balancer provides a single point of contact for clients to application targets. It distributes client traffic to multiple targets to increase availability of the application services. For client requests to a virtual application, the load balancer forwards the requests to actual applications that perform the service.

Turbonomic shows AWS and Azure load balancers in the Supply Chain. You can set the session scope to specific load balancers to see the constituent virtual applications, and the rest of the supply chain.

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>A load balancer has unlimited budget and will never be suspended.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides:</td>
<td>Transactions to end users.</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Transactions from virtual applications.</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers load balancers that are running in AWS accounts or Azure subscriptions.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic does not monitor load balancer resources.
Actions

Turbonomic does not recommend actions to perform on the load balancer itself, but it does recommend actions to perform on the VMs that host the underlying applications.

Supply Chain - Virtual Application

A virtual application is the client’s point of contact to request services from an application that is managed by a load balancer. The virtual application is a proxy for multiple instances of actual applications. For client requests to a virtual application, the load balancer forwards the requests to actual applications that perform the service.

To create a virtual application, the load balancer binds actual application instances to the virtual application.

<table>
<thead>
<tr>
<th>Synopsis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
<td>A virtual server has unlimited budget to buy application resources. As a result, a virtual application will never be suspended.</td>
</tr>
<tr>
<td>Provides:</td>
<td>Transactions to end users and other applications.</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Applications running on VMs.</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers virtual application servers through load balancer targets.</td>
</tr>
</tbody>
</table>
Monitored Resources

Turbonomic monitors the following resources for a virtual application:

- Transaction (transactions per second)
 The percentage utilization of the allocated transactions per second for the given virtual application.

Actions

Turbonomic does not recommend actions to perform on the virtual application itself, but it does recommend actions to perform on the VMs that host bound applications. For example, a virtual application that manages three SQL databases sees a surge in requests that degrades performance across all databases. In this scenario, Turbonomic can start a new VM to run another instance of the database application, and bind it to the virtual application.

Supply Chain - Application Server

An application server is a service that creates web applications and provides the environment to run them in. For example, IBM WebSphere is a framework that hosts Java based web applications, or Apache Tomcat is a Java Servlet container that hosts a range of Java applications on the web.

<table>
<thead>
<tr>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Provides:</td>
</tr>
<tr>
<td>Consumes:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Discovered through:</td>
</tr>
</tbody>
</table>
Application Server Discovery

To discover Application Servers, you can set up the following targets:

Monitored Resources

Turbonomic monitors the following resources for an application server:

- VMem
 The percentage utilization of the VMem (in Kbytes) that was allocated to the hosting VM.
- VCPU
 The percentage utilization of the VCPU (in MHz) allocated for the hosting VM.
- Transaction (transactions per second)
 For virtual applications discovered through a Load Balancer target or for application servers, the percentage utilization of the allocated transactions per second.
- Heap
 The percentage utilization of the application server’s heap.
- Transactions
 The percentage utilization of the server’s transaction capacity, in transactions per second.
- Response Time
 The percentage utilization of the server’s allocated response time.
- Threads
 The percentage utilization of the server’s thread capacity.

Actions

For application servers, Turbonomic can execute resize actions on heap and threads. For details, see Application Server Actions (on page 234).
Supply Chain - Application

In a virtualized environment, an application is a process running on a VM. Applications typically serve human users or other applications. They provide transactions to their users.

Synopsis

Budget:
By default applications have a priority of Mission Critical. This gives applications unlimited budget.

If you override this setting to lower an application’s priority, it gains budget as a function of its activity, as measured by utilization of transactions. The more active an application is (the more transactions the application performs), the more it is selling its services to a user.

Provides:
Transactions to other applications, to load balancer Virtual Application Servers, and to end users.

Consumes:
VM resources, including VCPU, VMem, and VStorage.

Discovered through:
Turbonomic uses Guest OS Process targets to discover WMI and SNMP application processes running on workloads. You can also specify targets to perform discovery through specific application targets.

For information, see the Target Configuration Guide.

Application Discovery

To discover applications, you can set up the following targets:

- Guest Os Processes targets to discover applications through WMI and SNMP
 - Applications by signature
 - These currently include LSASS, ISS, XenDesktop, VMView, MSSQL, and SharePoint.
 - Guest Load
The resources that Turbonomic has not assigned to any specific application. By default, every VM has a Guest Load application. (For more information, see Guest Load, below.)

Guest Load

The **Apps_GuestLoad** item is a special entry in the Applications hierarchy. This item tracks the resources that Turbonomic has not assigned to any specific application. This can occur for the following reasons:

- You do not have the licenses required to support Application monitoring
 In this case, Turbonomic lists all the consumed VM resources in the Apps_GuestLoad entry—this is the only entry under Applications.
- Turbonomic cannot discover some applications, or some applications are not registered for discovery.
 In this case, Turbonomic displays entries for the applications it has discovered, and lists the VM resources that are not accounted for under Apps_GuestLoad.
- VM resources are devoted to infrastructure, and not part of any application
 Turbonomic lists these resources under Apps_GuestLoad, and provides entries for the applications it has discovered.

Monitored Resources

Turbonomic can monitor the following resources for an application:

- **VMem**
 The percentage utilization of the VMem (in Kbytes) that was allocated to the hosting VM.
- **VCPU**
 The percentage utilization of the VCPU (in MHz) allocated for the hosting VM.

Actions

For Guest OS processes, Turbonomic doesn’t perform actions on applications. Instead, it performs actions on the host VMs. If utilization is high enough on an application, Turbonomic can create a new copy of the host VM. When an application is idle, it loses budget.
Supply Chain - Business Application

A Business Application is a logical grouping that serves as the top-level container for a business service. It contains the nodes for that service (for example underlying services or applications), and the infrastructure to support those nodes.

In the Turbonomic supply chain, a Business Application consumes resources from one or more applications or databases. The supply chain extends from there to the VMs that host the application nodes, and any other infrastructure the applications require. The supply chain displays the nodes that the Business Application consumes as:

- **Database Servers**
 Any database server that AppDynamics supports and manages.

- **Application Servers**
 Any application server that AppDynamics supports and manages.

- **Applications**
 Applications discovered through AppDynamics that Turbonomic cannot recognize as application servers.

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>Business Applications have unlimited budget.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides:</td>
<td>Transactions to other applications and to end users</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Resources from one or more Database Servers, Application Servers, or Applications</td>
</tr>
</tbody>
</table>

Turbonomic 7.22.1 User Guide
Supply Chain of Entities

<table>
<thead>
<tr>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovered through: AppDynamics targets</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for an application:

- **Transactions**

 The utilization of the Business Application’s transaction capacity, in transactions per second.

- **Response Time**

 For on-prem, the utilization of the database server’s allocated response time.

Actions

Turbonomic does not recommend actions for the Business Application, but it does recommend actions for the applications and infrastructure that the Business Application consumes.

NOTE:

The credentials for the service account that Turbonomic uses to access the AppDynamics target are read-only. For this reason, all of the Business Application actions are set to *Recommend.*
Supply Chain - Database Server

In AWS public cloud environments, a Database Server is a relational database that you have configured using AWS Relational Database Service (RDS). Turbonomic discovers RDS instances through your AWS targets, and uses its analysis to recommend or execute scaling actions as needed. Turbonomic uses AWS billing records to track the actual costs associated with your RDS instances, and to calculate potential savings or investment for scaling actions.

For on-prem, a database server is a database discovered through one of the associated database application targets or through an AppDynamics monitoring solution.

Synopsis

Budget:
- **Public Cloud**
 An RDS instance has unlimited budget.
- **On-prem**
 By default database servers have a priority of Mission Critical. This gives them unlimited budget.

 If you override this setting to lower the priority of the database, it gains budget as a function of its activity, as measured by utilization of transactions. The more active a database is (the more transactions it performs), the more it is selling its services to a user.

Provides:
Transactions to other applications and to end users.
Supply Chain of Entities

Synopsis

<table>
<thead>
<tr>
<th>Consumes:</th>
<th>Public Cloud:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Physical resources in the availability zone (displayed as a Host)</td>
</tr>
<tr>
<td>On-prem:</td>
<td>• Storage</td>
</tr>
<tr>
<td></td>
<td>• VM resources, including VCPU, VMem, and VStorage.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discovered through:</th>
<th>• AppDynamics targets:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Database server targets:</td>
</tr>
</tbody>
</table>

Database Server Discovery

To discover database servers, you can set up the following targets:

- **AppDynamics Monitoring Solutions:**

 Turbonomic discovers database servers that are managed by AppDynamics solutions that you have set up as targets.

Monitored Resources

Turbonomic monitors the following resources for a database server:

- **VMem**
 The percentage utilization of the VMem (in Kbytes) that was allocated to the database server.

- **VCPU**
 The percentage utilization of the VCPU (in MHz) allocated for the database server.

- **VStorage**
 The utilization of the database server’s storage capacity.

- **IO Throughput**
 The utilization of the database server’s capacity for IO throughput.

- **Connection**
 The utilization of the allocated connection capacity.

- **DBCacheHitRate**
 The percentage utilization of the database server’s allocated cache hit rate, where a greater value indicates fewer disk reads for data.

- **DBMem**
 The utilization of the database server’s memory capacity.

- **Response Time**
 The utilization of the database server’s allocated response time.

- **Transaction**
 For on-prem, the utilization of the database server’s transaction capacity, in transactions per second.

- **TransactionLog**
For on-prem, the percentage utilization of the database server’s capacity for storage devoted to transaction logs.

Actions

For on-prem database servers, Turbonomic can recommend actions on database memory, connections, and the transaction log.

NOTE:
Resize actions based on the TransactionLog resource depend on support for vStorage in the underlying hypervisor technology. Because current versions of Hyper-V do not provide API support for vStorage, Turbonomic cannot support TransactionLog resize actions for database servers running on the Hyper-V platform.

For details, see Database Server Actions (on page 235).

Supply Chain - Container

An application container is a standalone, executable image of software that includes components to host an application.

| Synopsis |
|-----------------|-----------------|
| Budget: | A container obtains its budget by selling resources to the hosted application. |
| Provides: | Resources for the applications to use: |
| | • Virtual CPU |
| | • Virtual Memory |
Synopsis

<table>
<thead>
<tr>
<th>Consumes:</th>
<th>Resources from container pods, virtual machines, and virtual datacenters. Note that container pods are not applicable for Pivotal Cloud Foundry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovered through:</td>
<td>For CloudFoundry, Turbonomic discovers containers through the Cloud Foundry target or the Pivotal Operations Manager target. For Kubernetes, Turbonomic discovers containers through the Kubeturbo pod that you have deployed in your environment.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for a container:

- **Virtual CPU**
 - The CPU capacity the container utilizes, measured in Gigahertz (GHz)
- **Virtual Memory**
 - The memory capacity the container utilizes, measured in Megabytes (MB)

Actions

Turbonomic can execute vertical Resize Container actions in Kubernetes and Pivotal Cloud Foundry platforms.

Constraints

When making Resize Container decisions in Kubernetes, Turbonomic represents ResourceQuota limit parameters as the commodities MemAllocation and CPUAllocation. These set Memory and CPU limits for a requested container. If you have not defined limits in the ResourceQuota, then the MemAllocation and CPUAllocation will be the capacity of the given host cluster.
Supply Chain - ContainerPod

A ContainerPod is a Kubernetes pod, which is a group of one or more containers with shared storage or network resources and a specification for how to run the containers together.

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>A container pod obtains its budget by selling resources to containers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides:</td>
<td>Resources for containers to use:</td>
</tr>
<tr>
<td></td>
<td>• Virtual CPU</td>
</tr>
<tr>
<td></td>
<td>• Virtual Memory</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Resources from virtual machines and virtual datacenters.</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers Kubernetes containers through the Kubeturbo pod that you have deployed in your environment.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for a container pod:

- **Virtual CPU**

 The CPU capacity the ContainerPod utilizes, measured in Gigahertz (GHz)

- **Virtual Memory**

 The memory capacity the ContainerPod utilizes, measured in Megabytes (MB)

- **Virtual Memory Request**
The memory currently requested by containers. The capacity for this resource is the Node Allocatable capacity on the underlying VM (the amount of resources available for pods).

- **Virtual CPU Request**
 The CPU currently requested by containers. The capacity for this resource is the Node Allocatable capacity on the underlying VM (the amount of resources available for pods).

- **Memory Request Allocation**
 The memory ResourceQuota request parameter for the pod.

- **CPU Request Allocation**
 The CPU ResourceQuota request parameter for the pod.

- **MemAllocation**
 The memory ResourceQuota limit parameter for the pod.

- **CPUAllocation**
 The CPU ResourceQuota limit parameter for the pod.

Note that Turbonomic does not move container pods to VMs that do not have available Request capacity. If you need to place a pod and there is not enough Request capacity in the available VMs, then Turbonomic will provision a new VM.

Turbonomic represents namespace ResourceQuota limit parameters as the capacity for the commodities MemAllocation and CPUAllocation. These set Memory and CPU limits for a requested container. If you have not defined limits in the ResourceQuota, then the MemAllocation and CPUAllocation will be the capacity of the given host cluster.

Actions

Turbonomic can execute or recommend these actions for a container pod in Kubernetes platforms:

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>Manual</td>
</tr>
<tr>
<td>Move container pod to another Kubernetes node.</td>
<td></td>
</tr>
<tr>
<td>Suspend</td>
<td>Manual</td>
</tr>
<tr>
<td>Suspend a new container pod as part of application horizontal scaling.</td>
<td></td>
</tr>
<tr>
<td>Provision</td>
<td>Manual</td>
</tr>
<tr>
<td>Provision a new container pod as part of application horizontal scaling.</td>
<td></td>
</tr>
</tbody>
</table>

Kubernetes Constraints

Turbonomic respects constraints when making placement decisions. Kubernetes taints for nodes and tolerations for pods are treated as constraints. For example, if a pod has a toleration attribute that restricts it from moving to a certain node, Turbonomic will not move that pod to the restricted node.

In addition, Turbonomic imports Kubernetes node labels and treats them as constraints for Move Pod actions. For example, if a pod has a defined node label, Turbonomic will move that pod to a node with a matching label.

Turbonomic recognizes pod affinity and anti-affinity policies.
A namespace is a logical pool of resources in a Kubernetes environment that manages workloads based on specific requirements or business needs. For example, administrators can pool resources for different organizations within the enterprise, and assign different policies to each pool.

NOTE:
Empty namespaces do not display in the supply chain.

Synopsis

<table>
<thead>
<tr>
<th></th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td></td>
</tr>
<tr>
<td>Provides</td>
<td></td>
</tr>
<tr>
<td>Consumes</td>
<td></td>
</tr>
<tr>
<td>Discovered through</td>
<td>Kubeturbo pods</td>
</tr>
</tbody>
</table>

A namespace can include the following compute resource quotas to describe its capacity:

- **VCPULimitQuota**

 Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

- **VMemLimitQuota**

 Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

- **VCPURequestQuota**

 Across all pods in a non-terminal state, the sum of CPU requests cannot exceed this value.

- **VMemRequestQuota**

 Across all pods in a non-terminal state, the sum of memory requests cannot exceed this value.

Turbonomic treats quotas defined in namespaces as constraints when making sizing decisions for containers. When you scope to a namespace in the supply chain, the Capacity and Usage chart shows *Capacity* as the namespace quotas. *Used* values are the sum of resource limits and/or requests (as influenced by the quotas) set for all pods in the namespace.
For quotas not defined in a namespace, *Capacity* for the commodity is infinite. In this case, you would see unusually high capacity values in the chart, as shown in the image below. *Used* values are the sum of resource limits and/or requests set for all pods in the namespace. If these are not set, *Used* value is 0 (zero).

Monitored Resources

Turbonomic does not monitor resources for namespaces.

Actions

Turbonomic does not recommend actions to perform on a namespace. Instead, it recommends actions to perform on containers.
Supply Chain - Workload Controller

A workload controller is a Kubernetes controller that watches the state of your pods and then requests changes where needed. Workload controllers are persistent entities that account for historical data in pods.

Synopsis

<table>
<thead>
<tr>
<th></th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
<td></td>
</tr>
<tr>
<td>Provides:</td>
<td></td>
</tr>
<tr>
<td>Consumes:</td>
<td></td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Kubeturbo pods.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic does not monitor resources for workload controllers.

Actions

Turbonomic does not recommend actions to perform on a workload controller. Instead, it recommends actions to perform on pods.
Supply Chain - Container Spec

A container spec is a shared definition for all ephemeral container replicas. It is a persistent entity that retains the historical utilization data of containers, which Turbonomic leverages to make container sizing decisions. Utilization data includes:

- Virtual CPU used by all container replicas
- Virtual memory used by all container replicas

Synopsis

<table>
<thead>
<tr>
<th>Budget</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides</td>
<td>N/A</td>
</tr>
<tr>
<td>Consumes</td>
<td>N/A</td>
</tr>
<tr>
<td>Discovered through</td>
<td>Kubeturbo pods</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic does not monitor resources for container specs.

Actions

Turbonomic does not recommend actions to perform on container specs. Instead, it recommends actions to perform on containers.
Supply Chain - Virtual Machine

A virtual machine (VM) is a software emulation of a physical machine, including OS, virtual memory and CPUs, and network ports. VMs host applications, or they provide resources to container platforms.

Synopsis

Budget:
A VM gains its budget by selling resources to the applications it hosts. If utilization is high enough, Turbonomic can allocate more resources to the VM, provision another instance, or move the VM to a host that has more resources.

If utilization falls off, the VM loses budget. On the public cloud, if the budget isn't enough to pay for the host services, Turbonomic can post an action to suspend the VM.

Provides:
Resources for hosted applications to use:
- VMEM (Kbytes)
- VCPU (MHz)
- VStorage
- IOPS (storage access operations per second)
- Latency (capacity for disk latency in ms)
- Memory and CPU Requests (for Kubernetes environments)

Consumes:
- Physical host resources, including CPU and Mem. For public cloud environments, the Host node corresponds to cloud zones
- Storage

Discovered through:
Turbonomic discovers VMs through hypervisor targets.
Monitored Resources

Turbonomic monitors the following resources for a VM:

- **VMem**
 The percentage utilization of the virtual memory (measured in Kbytes) allocated for the VM.

- **VCPU**
 The percentage utilization of the virtual CPU capacity (measured in MHz) allocated for the VM.

- **VStorage**
 The percentage utilization of the virtual storage capacity (measured in Kbytes) allocated for the VM.

- **IOPS (Storage Access Operations per Second)**
 The percentage utilization of IOPS allocated for the VStorage on the VM.

 NOTE:
 In Azure, different instance types support different IOPS limits. This is generally related to the storage tier for that instance type. When calculating resize actions in Azure environments, Turbonomic considers the IOPS capacity for the given instance type. It can scale up to an instance type that supports more IOPS, or it can scale down if the IOPS are underutilized.

- **Latency**
 The percentage utilization of latency (measured in ms) allocated for the VStorage on the VM.

- **Memory Request Allocation**
 For VMs that host Kubernetes pods, the memory available to the VM to support the ResourceQuota request parameter for a given VDC (Kubernetes namespace).

- **CPU Request Allocation**
 For VMs that host Kubernetes pods, the CPU available to the VM to support the ResourceQuota request parameter for a given VDC (Kubernetes namespace).

- **Virtual Memory Request**
 For VMs that host Kubernetes pods, the memory currently requested by containers. The capacity for this resource is the Node Allocatable capacity (the amount of resources available for pods).

- **Virtual CPU Request**
 For VMs that host Kubernetes pods, the CPU currently requested by containers. The capacity for this resource is the Node Allocatable capacity (the amount of resources available for pods).

- **MemAllocation**
 The memory ResourceQuota limit parameter for a given VDC (Kubernetes namespace).

- **CPUAllocation**
 The CPU ResourceQuota limit parameter for a given VDC (Kubernetes namespace).

Actions

Turbonomic recommends the following actions for a VM:

- **Terminate or Remove a VM (public cloud, only)**
 For a VM that has been suspended for a long period.
• Suspend VM (public cloud or container platform, only)
 For low utilization of VM’s resources, or an underutilized node (assuming the pods can run elsewhere).
• Provision VM (container platforms, only)
 For high workload demand that indicates a need for more nodes or diego cells.
• Resize Up VM
 ◦ High resource utilization on VM
• Resize Down VM
 ◦ Low resource utilization on VM that must not shut down
• Move VM for:
 ◦ High resource utilization on VM
 ◦ High resource utilization on hosting PM
 ◦ Excess IOPS or Latency in VStorage
 ◦ Workload placement violation
 ◦ Hosting PM is underutilized (move before suspending PM)
• Move VM Storage
 For excess utilization of the current datastore, or for more efficient utilization of datastores in the environment.
• Reconfigure Storage
 For overutilized storage resources, add VStorage capacity.
 For underutilized storage resources, remove VStorage capacity.
• Reconfigure VM
 Change network and storage configuration. For example, Turbonomic recommends this action if the VM is configured to use a network that it cannot access.

For more information, see Virtual Machine Actions (on page 239).

Azure Instance Requirements

In Azure environments, some instance types require workloads to be configured in specific ways, and some workload configurations require instance types that support specific features. When Turbonomic generates resize actions in Azure, these actions consider the following features:

• Accelerated Networking (AN)
 In an Azure environment, not all instance types support AN, and not all workloads on AN instances actually enable AN. Turbonomic maintains a dynamic group of workloads that have AN enabled, and it assigns a policy to that group to exclude any templates that do not support AN. In this way, if a workload is on an instance that supports AN, and that workload has enabled AN, then Turbonomic will not recommend an action that would move the workload to a non-AN instance.
• Azure Load Balancer
 Turbonomic recognizes Standard and Basic VM instances, and whether the workloads run in a Load Balancer environment. If a workload is load balanced, then Turbonomic will not recommend a resize to an instance that does not support load balancing.
• Azure Premium Storage
Turbonomic recognizes whether a workload uses Premium Storage, and will not recommend a resize to an instance that does not support Azure Premium Storage.

In addition, Turbonomic recognizes processor types that you currently use for your workloads. If your workload is on a GPU-based instance, then Turbonomic will only recommend moves to other compatible GPU-based instance types. For these workloads, Turbonomic does not recommend resize actions.

AWS Instance Requirements

In AWS some instances require workloads to be configured in specific ways before they can move to those instance types. If Turbonomic recommends moving a workload that is not suitably configured onto one of these instances, then it sets the action to Recommend Only, and describes the reason. Turbonomic will not automate the move, even if you have set the action mode for that scope to Automated. You can execute the move manually, after you have properly configured the instance.

Note that if you have workloads that you cannot configure to support these requirements, then you can set up a policy to keep Turbonomic from making these recommendations. Create a group that contains these workloads, and then create a placement policy for that scope. In the policy, **Excluded Templates** to exclude the instance types that do require ENA support. For information about placement policies, see [Automation Policies](#page_220). For information about excluding instance types, see the entry on "Excluded Templates" in [Analysis Policies: VMs](#page_266).

The instance requirements that Turbonomic recognizes are:

- **Enhanced Network Adapters**
 Some workloads can run on instances that support Enhanced Networking via the Elastic Network Adapter (ENA), while others can run on instances that do not offer this support. Turbonomic can recommend moving a workload that does not support ENA onto an instance that does. To make that move, you must perform the required configuration of the workload before you can execute the move. If you move a non-ENA VM to an instance that requires ENA, then AWS cannot start up the VM after the move. Before executing the move, you must enable ENA on the VM.

 For information about ENA configuration, see "Enabling Enhanced Networking with the Elastic Network Adapter (ENA) on Windows Instances" in the AWS documentation.

- **Linux AMI Virtualization Type**
 An Amazon Linux AMI can use ParaVirtual (PV) or Hardware Virtual Machine (HVM) virtualization. Turbonomic can recommend moving a PV workload to an HVM instance that does not include the necessary PV drivers.

 To check the virtualization type of an instance, open the Amazon EC2 console to the Details pane, and review the Virtualization field for that instance.

- **64-bit vs 32-bit**
 Not all AWS instance can support a 32-bit workload. Turbonomic can recommend moving a 32-bit workload to an instance that only supports a 64-bit platform.

- **NVMe Block**
 Some instances expose EBS volumes as NVMe block devices, but not all workloads are configured with NVMe drivers. Turbonomic can recommend moving such a workload to an instance that supports NVMe. Before executing the move, you must install the NVMe drivers on the workload.

In addition, Turbonomic recognizes processor types that you currently use for your workloads. For move or resize actions, Turbonomic keeps your workloads on instance types with compatible processors:

- **GPU-based instances:**
If your workload is on a GPU-based instance, then Turbonomic will only recommend moves to other compatible GPU-based instance types. For these workloads, Turbonomic does not recommend resize actions.

- ARM-based instances

If your workload is on an ARM-based instance, then Turbonomic will only recommend moves and resizes to other compatible ARM-based instance types.

Resizing Storage Capacity in AWS Environments

When a VM needs more storage capacity Turbonomic recommends actions to move the it to an instance that provides more storage. Note that AWS supports both Elastic Block Store (EBS) and Instance storage. Turbonomic recognizes these storage types as it recommends storage actions.

If the root storage for your workload is Instance Storage, then Turbonomic will not recommend a storage action. This is because Instance Storage is ephemeral, and such an action would cause the workload to lose all the stored data.

If the root storage is EBS, then Turbonomic recommends storage actions. EBS is persistent, and the data will remain after the action. However, if the workload uses Instance Storage for extra storage, then Turbonomic does not include that storage in its calculations or actions.

Azure Resource Group Discovery

To discover Azure Resource Groups, you can set up the following targets:

- Microsoft Azure service principle targets
- Microsoft Azure Enterprise Agreement (EA) targets

For Azure environments that include Resource Groups, Turbonomic discovers the Azure Resource Groups and the tags that are used to identify these groups.

In the Turbonomic user interface, to search for a specific Azure Resource Group, choose **Resource Groups** in the Search Page.

You can set the scope of your Turbonomic session to an Azure Resource Group by choosing a group in the Search results and clicking **Scope To Selection**.

You can also use Azure tags as filter criteria when you create a custom Turbonomic resource group. You can choose the Azure Resource Groups that match the tag criteria to be members of the new custom group.

To find the available tags for a specific Azure Resource Group, add the Basic Info chart configured with Related Tag Information to your view or custom dashboard. See [Basic Info Charts (on page 174)](#).

VM Naming in Pivotal Operations Manager

When Turbonomic discovers VMs in a Pivotal Operations Manager environment, it assigns VM names that identify the VM in the context of your Pivotal environment. The name is expressed in the following tokens:

```
{PCF Job name}#{index number}#{deployment ID}{{IaaS VM name}}
```
A virtual datacenter (vDC) is a collection or pool of resources that groups the resources around specific requirements or business needs. These vDCs can implement boundaries for the cloud infrastructure, and then can establish tenant groups on that infrastructure.

Turbonomic displays these pools in the Supply Chain as Virtual Datacenter entities. It discovers vDCs for:

- **Container Orchestration Platforms:**
 - Kubernetes (if you deployed Kubeturbo 7.22.0 or earlier)

 If you deployed Kubeturbo 7.22-ea or later, the supply chain displays Kubernetes namespace (on page 55) as a separate entity. The supply chain also models workload controllers (on page 57) and container specs (on page 58) to account for historical utilization of container resources.
Container Orchestration Virtual Datacenters

Container Orchestration platforms like Kubernetes or Cloud Foundry use logical pools of resources to manage scheduling of workload. For example, administrators can pool resources for different organizations within the enterprise, and assign different policies to each pool. Turbonomic represents these pools as Virtual Datacenters (vDCs).

Turbonomic creates vDCs for the following platforms:

- Kubernetes
 Each Namespace appears in Turbonomic as a vDC. A Namespace includes a ResourceQuota object to determine the capacity of this vDC.

- Cloud Foundry
 An Org appears in Turbonomic as a vDC. The Org includes a current Quota Plan, which determines the capacity of this vDC.

 For Cloud Foundry and Pivotal Cloud Foundry, Turbonomic imports the Quota Plan of the Organization and Spaces where Turbonomic represents MemAllocation as the memory limit (maximum memory allowed) and number of consumers as the total number of containers allowed.
Supply Chain of Entities

<table>
<thead>
<tr>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
</tr>
<tr>
<td>Provides:</td>
</tr>
<tr>
<td>Consumes:</td>
</tr>
<tr>
<td>Discovered through:</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for a Container Orchestrator vDC:

- **Memory Request Allocation**
 For Kubernetes environments, the memory available to support the ResourceQuota request parameter for the given namespace.

- **CPU Request Allocation**
 For Kubernetes environments, the CPU available to support the ResourceQuota request parameter for the given namespace.

- **MemAllocation**
 For Kubernetes environments, the memory ResourceQuota limit parameter for the namespace.

- **CPUAllocation**
 For Kubernetes environments, the CPU ResourceQuota limit parameter for the namespace.

Actions

Turbonomic does not recommend actions to perform on a Container Orchestrator vDC. Instead, it recommends actions to perform on the entities that provide resources to the vDC.

Private Cloud Virtual Datacenters

In private cloud environments, Turbonomic discovers the infrastructure that provides resources to the cloud, and the workloads that run on the cloud. To manage these resources, private clouds organize the infrastructure into Provider and Consumer Virtual Datacenters.

Provider Virtual Datacenters

A provider virtual datacenter (vDC) is a collection of physical resources (hosts and datastores) within a cloud stack. The cloud administrator has access to these resources, and defines the datacenter members. A Provider vDC is created to manage resources that will be allocated to external customers through one or more Consumer vDCs.
Supply Chain of Entities

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>A Provider vDC gains its budget by selling resources to the Consumer vDCs that it hosts. If utilization falls off, the datacenter loses budget. Ultimately, if the budget isn’t enough to pay for the services it consumes, Turbonomic will recommend decommissioning the Provider vDC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides:</td>
<td>Physical resources such as hosts and datastores to Consumer vDCs.</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Hosts and datastores from the physical infrastructure</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers vDCs through private cloud stack managers such as vCloud Director.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for a Provider vDC:

- **Mem**
 - The percentage of physical machine memory that is reserved or in use, measured in Kbytes.
- **CPU**
 - The percentage utilization of CPU resources allocated to the Provider vDC.
- **Storage**
 - The percentage usage of storage that is allocated to the Provider vDC.

Actions

Turbonomic does not recommend actions to perform on a Provider vDC. Instead, it recommends actions to perform on the entities that provide resources to the vDC.

Consumer Virtual Datacenters

A Consumer Virtual Datacenter (vDC) is a collection of resources that are available for external customers to manage workload through the private cloud. It is an environment customers can use to store, deploy, and operate virtual systems. Consumer Datacenters use the resources supplied by a Provider Datacenter.

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>A Consumer vDC gains its budget as a function of its activity. The higher the utilization of the vDC, the more Turbonomic assumes the vDC is selling its services to a user. If utilization is high enough on a Consumer vDC, Turbonomic can increase resources for the vDC. If utilization falls off, Turbonomic can reduce resource capacity, or ultimately recommend terminating the vDC. Turbonomic can also resize VMs through the Consumer vDC in response to changes in VM utilization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides:</td>
<td>Resources to host virtual systems.</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Provider vDC</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers vDCs through cloud stack managers such as vCloud Director.</td>
</tr>
</tbody>
</table>
Supply Chain of Entities

While users can see some of the physical resources that support the Consumer vDC, consumer-level users cannot modify these physical resources. Users of Consumer vDCs make changes to how the virtual devices are deployed in that environment, but they must ask the Provider vDC administrator to add more physical resources to be used by the Consumer vDC. Likewise, Turbonomic can change resources on the VMs running in the vDC, but it does not make any changes to physical resources through this vDC.

Monitored Resources

Turbonomic monitors the following resources for a Consumer vDC:

- **Mem**
 The percentage of physical machine memory that is reserved or in use for this datacenter, measured in Kbytes.
- **CPU**
 The percentage utilization of CPU resources allocated to the datacenter.
- **Storage**
 The percentage usage of storage that is allocated to the vDC.

Actions

Turbonomic does not recommend actions to perform on a Consumer vDC. Instead, it recommends actions to perform on the entities running in the Provider vDC.

Supply Chain - Host

For on-prem environments, a host is a server that runs processes, including hypervisor processes to host virtual workloads. Note that a host is not necessarily a physical piece of hardware. A VM can be set up as a server that runs
a hypervisor, and in turn it can host other VMs within its processing space. However, it’s most usual to use physical hardware as your hosts.

Synopsis

Budget:
- Public Cloud
 Availability zones have unlimited budget.
- On-prem
 A host gains its budget by selling resources to the workloads that run on it. The more workloads running on a host, the more budget the host has to purchase storage and datacenter resources. If utilization of a host is high enough, Turbonomic can recommend that you provision a new one. If utilization falls off, the host loses budget. Ultimately, if the budget isn’t enough to pay for the services it consumes, Turbonomic will recommend to suspend or power off the host.

Provides:
- Host resources for VMs to use:
 - Mem (Kbytes)
 - CPU (MHz)
 - IO (throughput on the I/O bus)
 - Net (network throughput)
 - Swap (swap rate capacity measured in bytes/sec)
 - Ballooning (sharing of memory among hosted VMs)
 - CPU Ready Queue (wait time on the queue in ms)

Consumes:
Datacenter resources (physical space, cooling, etc.) and storage.

Discovered through:
- Public Cloud:
 Turbonomic discovers hosts through cloud targets.
- On-prem:
 Turbonomic discovers hosts through hypervisor targets. For some hypervisor vendors, the host is the target, and for others the hosts are managed by the specified target.

Monitored Resources

For public cloud environments, Turbonomic discovers the resources that an availability zone provides, including:

- **Templates**
 The templates and template families that each zone or region delivers. This includes template capacity and cost for workload resources.
- **Account Services**
 These include storage modes, services the accounts offer for enhanced metrics, and services for different storage capabilities.
- **Relational Database Services (RDS)**
 The RDS capabilities each cloud account provides.
• **Storage Tiers**
 Turbonomic discovers the storage tier that supports your workloads, and uses the tier pricing to calculate storage cost.

• **Billing**
 Turbonomic discovers the billing across the zones and regions to predict costs in the future, and to track ongoing costs. This includes comparing on-demand pricing to Reserved Instance billing.

For on-prem environments, Turbonomic monitors the following resources on a host:

• **Mem**
 The percentage of the host’s memory that is reserved or in use, measured in Kbytes.

• **CPU**
 The percentage of the host’s CPU cycles that are reserved or in use, measured in MHz.

• **IO**
 The data rate through the host’s IO adapters. Charts show the percentage of the host’s IO capacity that is in use, measured in Kbytes per second.

• **Net**
 The data rate through the host’s network adapters. Charts show the percentage of the host’s network throughput capacity that is in use, measured in Kbytes per second.

• **Swap**
 The percentage of the host’s allocated swap space that is in use, measured in Kbytes.

• **Balloon**
 The sharing of memory among VMs running on the host. Charts show percentage of the host’s ballooning capacity that is in use, measured in Kbytes.

• **1, 2, 4... CPU Ready**
 The percentage of the host’s allocated ready queue capacity (measured in msec) that is in use, for the CPU ready queues. Charts show the percentage of wait time for all the VMs on a given host.

Actions

Turbonomic recommends actions for on-prem hosts. For details, see [Host (Physical Machine) Actions](on page 236). Turbonomic does not recommend actions for public cloud hosts.
Supply Chain - Volume

Turbonomic represents cloud storage as Volumes. A Volume is a storage device that you can attach to a workload instance. You can use an attached Volume the same as a physical hard drive.

Synopsis

| Budget: A Volume gains its budget by selling resources to the workloads it serves. If utilization of a Volume is high enough, Turbonomic can recommend that you provision a new one. |
| Provides: Storage resources for VMs to use: |
| • Storage Access |
| • Storage Amount |
| • IO Throughput |
| Consumes: Storage services provided by Availability Zones or Regions |
| Discovered through: Turbonomic discovers the storage volumes you have contracted through your cloud account or subscription. |

Monitored Resources

Turbonomic monitors the following resources for a datastore:

- **Storage Access**
 The percentage of the Volume's capacity for storage access operations that is in use.
- **Storage Amount**
 The percentage of the Volume's capacity (measured in Kbytes) that is in use.
- **IO Throughput**
 The percentage of the volume's capacity capacity for IO throughput that is in use.
Supply Chain of Entities

Actions

Turbonomic recommends the following actions for a Volume:

- **Delete**
 For low utilization of storage resources, move served VMs to other Volumes and suspend this one.

For more information, see [Volume Actions](on page 237).

Supply Chain - Storage

Turbonomic represents storage as Datastores. A Datastore is a logical grouping of one or more physical storage devices that serve workload storage requirements.

Synopsis

<table>
<thead>
<tr>
<th>Budget</th>
<th>A Datastore gains its budget by selling resources to the VMs it serves. If utilization of a Datastore is high enough, Turbonomic can recommend that you provision a new one.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides</td>
<td>Host resources for VMs to use:</td>
</tr>
<tr>
<td></td>
<td>- Storage amount</td>
</tr>
<tr>
<td></td>
<td>- IOPS (storage access operations per second)</td>
</tr>
<tr>
<td></td>
<td>- Latency (capacity for disk latency in ms)</td>
</tr>
<tr>
<td>Consumes</td>
<td>Disk arrays (or aggregates)</td>
</tr>
<tr>
<td>Discovered through</td>
<td>Turbonomic discovers on-prem Datastores through hypervisor targets and storage controllers.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for a datastore:

- **Storage**
 The percentage of the datastore’s capacity (measured in Kbytes) that is in use.
- **IOPS**
Storage access operations per second. Charts in the user interface show the percentage of allocated IOPS capacity that is used on a datastore.

- Latency
 The percentage of allocated latency (measured in ms) that is in use on the datastore. This measures the latency experienced by all VMs and hosts that access the datastore.

Actions

Turbonomic recommends the following actions for a datastore:

- Move
 For high utilization of physical storage, move datastore to a different disk array (aggregate).

- Provision
 For high utilization of storage resources, provision a new datastore.

- Resize
 Increase or decrease the datastore capacity.

- Start
 For high utilization of storage resources, start a suspended datastore.

- Suspend
 For low utilization of storage resources, move served VMs to other datastores and suspend this one.

- Delete Datastore or Volume
 Delete a datastore or volume that has been suspended for a period of time.

For more information, see Storage (Datastore) Actions (on page 237).
Supply Chain - Disk Array

A Disk Array (an aggregate) is a data storage system made up of multiple disk drives. For example, a RAID is an aggregate that implements redundancy and other data management features. A disk array provides storage volumes to serve the storage requirements of physical machines. It uses the resources of one storage controller, which manages the disk array operation.

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>A disk array gains its budget by selling resources to the datastores it serves. If utilization of a disk array is high enough, Turbonomic can recommend that you provision a new one.</th>
</tr>
</thead>
</table>
| Provides: | Storage resources for datastores to use:
• Storage amount
• Storage Provisioned
• IOPS (storage access operations per second)
• Latency (capacity for disk latency in ms) |
| Consumes: | Storage controllers |
| Discovered through: | Turbonomic discovers disk arrays through storage controller targets. |

Monitored Resources

Turbonomic monitors the following resources for a disk array:

- **Storage**

 The percentage utilization of the storage (measured in Kbytes) allocated for the given disk array. Allocated storage is the sum of the aggregated physical storage that the array exposes to the environment.

- **Storage Provisioned**
The percentage utilization of the storage that was provisioned for this disk array. This encompasses over-provisioning of storage, as well as thin-provisioning on the VMs, deduplication, compression, and other storage optimizations. For example, assume storage over-provisioning of 200% as the only storage optimization. If Storage Utilization was at 100%, then Storage Provisioned would be 50% (half of the over-provisioned storage in use). A more realistic situation would have the current Storage Utilization at 50%, and Storage Provisioned would show a value of 25%.

- **IOPS - Storage Access Operations per Second**
 The percentage utilization of allocated IOPS. The disk array aggregates this value for all its volumes. In other words, all volumes on a given disk array show the same value for this resource.

- **Latency**
 The percentage utilization of allocated latency. The disk array aggregates this value for all its volumes. In other words, all volumes on a given disk array show the same value for this resource.

Actions

Turbonomic recommends the following actions for a disk array:

- **Provision Disk Array**
 For high utilization of the disk array's storage, provision a new disk array (recommendation, only).

- **Start Disk Array**
 For high utilization of disk array, start a suspended disk array (recommendation, only).

- **Suspend Disk Array**
 For low utilization of the disk array's storage, move VMs to other datastores and suspend volumes on the disk array (recommendation, only).

- **Move Disk Array (for NetApp Cluster-Mode, only)**
 For high utilization of Storage Controller resources, Turbonomic can move an aggregate to another storage controller. The storage controllers must be running.

 For high IOPS or Latency, a move is always off of the current disk array. All the volumes on a given disk array show the same IOPS and Latency, so moving to a volume on the same array would not fix these issues.

- **Move VM**
 For high utilization of Storage on a volume, Turbonomic can move a VM to another volume. The new volume can be on the current disk array, on some other disk array, or on any other datastore.

 For high IOPS or Latency, a move is always off of the current disk array. All the volumes on a given disk array show the same IOPS and Latency, so moving to a volume on the same array would not fix these issues.

- **Move Datastore**
 To balance utilization of disk array resources, Turbonomic can move a datastore to another array.

Action Automation for NetApp Storage Systems

For NetApp storage systems, the actions Turbonomic can automatically perform depend on the NetApp version you are running, and whether the system is running in cluster mode:
Supply Chain of Entities

<table>
<thead>
<tr>
<th>Automated Action</th>
<th>7-Mode</th>
<th>Cluster-Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move VM between datastores, on the same disk array</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Move VM between datastores on different disk arrays</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Move Datastore between disk arrays on the same storage controller</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Move Datastore between disk arrays on different storage controllers</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Resize Storage</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Resize Disk Array</td>
<td>No — Resize up, only</td>
<td>No — Resize up, only</td>
</tr>
</tbody>
</table>

In addition, for a system running in Cluster-Mode, Turbonomic can recommend moving an aggregate to another storage controller.

Supply Chain - Storage Controller

A Storage Controller is a device that manages one or more disk arrays. The storage controller provides CPU cycles to perform storage management tasks for each disk array it manages.

Synopsis

Budget: A storage controller gains its budget by selling resources to the disk arrays it manages. If utilization of the storage controller’s CPU resources is high enough, Turbonomic can recommend that you provision a new one and move disk arrays (aggregates) to it.

Provides: CPU resources to manage disk arrays.

Consumes: NA

Discovered through: Turbonomic directly accesses storage controller targets.

Monitored Resources

Turbonomic monitors the following resources for a storage controller:

- CPU
The percentage utilization of CPU resources allocated to the storage controller.

- **Storage**
 The percentage of the storage capacity that is in use. The storage allocated to a storage controller is the total of all the physical space available to aggregates managed by that storage controller.

- **IOPS**
 Storage access operations per second. Charts show the percentage of allocated IOPS capacity that is used by the aggregates managed by the storage controller.

- **Latency**
 The percentage of allocated latency (measured in ms) that is in use for this storage controller. This measures the latency experienced by all VMs and hosts that access the managed storage.

Actions

Turbonomic recommends the following actions for a storage controller:

- **Provision Storage Controller (recommendation, only)**
 For high utilization of the storage controller’s CPU, provision a new storage controller, and then move disk arrays to it.

Supply Chain - IO Module

An IO Module connects the compute resources on a chassis to the fabric domain via the Fabric Interconnect. It provides the servers on the chassis with Net resources. Typical installations provide two IO Modules per chassis.

Turbonomic supports IO Modules when you have installed the Fabric Control Module license.

<table>
<thead>
<tr>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
</tr>
<tr>
<td>Provides:</td>
</tr>
<tr>
<td>Consumes:</td>
</tr>
<tr>
<td>Discovered through:</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for an IO Module:

- **Net**
 The percentage utilization of the total throughput (storage and network, combined) allocated for the IO Module.
Actions
Turbonomic does not recommend actions to perform on an IO Module.

Supply Chain - Fabric Interconnect
A Fabric Interconnect connects servers in a computing fabric to the fabric’s network and storage resources. It provides network bandwidth to the servers in the platform.

<table>
<thead>
<tr>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
</tr>
<tr>
<td>Provides:</td>
</tr>
<tr>
<td>Consumes:</td>
</tr>
<tr>
<td>Discovered through:</td>
</tr>
</tbody>
</table>

Monitored Resources
Turbonomic monitors the following resources for Fabric Interconnect:
- Net
 The percentage utilization of the total network throughput allocated for the Fabric Interconnect.

Actions
Turbonomic recommends the following actions to perform on a Fabric Interconnect
- Resize port to increase size.
For details, see [Switch Actions](#).

Supply Chain - Chassis
A chassis houses the servers that are part of a computing fabric. It provides compute, memory, storage, and bandwidth resources.

<table>
<thead>
<tr>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
</tr>
<tr>
<td>Provides:</td>
</tr>
</tbody>
</table>
Supply Chain of Entities

<table>
<thead>
<tr>
<th>Synopsis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumes:</td>
<td>N/A</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers Chassis through fabric manager targets.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for the servers in a chassis:

- **Power**

 The percentage of the acceptable range of power consumption that is utilized by this chassis.

- **Cooling**

 The percentage of the acceptable temperature range that is utilized by this chassis. As the chassis temperature nears the high or low running temperature limits, this percentage increases.

Actions

Turbonomic does not recommend actions for a chassis.

Supply Chain - Datacenter

For on-prem environments, a datacenter is the sum of VMs, PMs, datastores, and network devices that are managed by a given hypervisor target. A datacenter provides compute, memory, storage, and bandwidth resources.

Synopsis

| Budget: | A Datacenter has unlimited budget. |
Synopsis

<table>
<thead>
<tr>
<th>Provides:</th>
<th>For on-prem, physical space, cooling, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumes:</td>
<td>N/A</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>• On-prem</td>
</tr>
<tr>
<td></td>
<td>Turbonomic discovers Datacenters through hypervisor targets.</td>
</tr>
<tr>
<td></td>
<td>• Public Cloud</td>
</tr>
<tr>
<td></td>
<td>Turbonomic discovers zones through public cloud targets.</td>
</tr>
</tbody>
</table>

Monitored Resources

For on-prem environments, Turbonomic does not monitor resources directly from the datacenter, but it does monitor the following resources, aggregated for the hosts in a datacenter:

- **Mem**
 The percentage of the PM’s memory that is reserved or in use, measured in Kbytes.

- **CPU**
 The percentage of the PM’s CPU cycles that are reserved or in use, measured in MHz.

- **IO**
 The data rate through the PM’s IO adapters. Charts in the user interface show the percentage of the PM’s IO capacity that is in use, measured in Kbytes per second.

- **Net**
 The data rate through the PM’s network adapters. Charts in the user interface show the percentage of the PM’s network throughput capacity that is in use, measured in Kbytes per second.

- **Swap**
 The percentage of the PM’s allocated swap space that is in use, measured in Kbytes.

- **Balloon**
 The sharing of memory among VMs running on the host. Charts in the user interface show percentage of the PM’s ballooning capacity that is in use, measured in Kbytes.

- **1, 2, 4 CPU Ready**
 The percentage of the PM’s allocated ready queue capacity (measured in msec) that is in use, for 1, 2, and 4 CPU ready queues. Charts in the user interface show the percentage or wait time for all the VMs on a given host PM.

Actions

Turbonomic does not recommend actions to perform on a datacenter.
Supply Chain - Zone

A Zone represents an Availability Zone in your public cloud account or subscription. A zone is a location within a given region that serves as a datacenter to host the workloads that you run in your environment.

<table>
<thead>
<tr>
<th>Synopsis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
<td>Turbonomic assumes a Zone has infinite resources.</td>
</tr>
<tr>
<td>Provides:</td>
<td>Compute and storage resources to VMs.</td>
</tr>
<tr>
<td>Consumes:</td>
<td>Region resources.</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Turbonomic discovers Zones through public cloud targets.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic monitors the following resources for a Zone:

- **Virtual Memory**
 The percentage utilized of memory capacity for all the workloads in the zone.
- **Virtual CPU**
 The percentage utilized of VCPU capacity for all the workloads in the zone.
- **Storage Access**
 For environments that measure storage access, the percentage utilized of access capacity for the zone.
- **Storage Amount**
 The percentage utilized of storage capacity for the zone.
- **IO Throughput**
 For environments that measure IO throughput, the percentage utilized of throughput capacity for the zone.
- **Net Throughput**
 For environments that measure Net throughput, the percentage utilized of throughput capacity for the zone.

Actions

Turbonomic does not recommend actions to perform on a zone. It does recommend actions for VMs in a Zone.

Supply Chain - Region

A Region represents a geographical area that is home to one or more Availability Zones. Regions are often isolated from each other, and you can incur a cost for data transfer between them.
Supply Chain of Entities

Synopsis

<table>
<thead>
<tr>
<th>Budget:</th>
<th>Turbonomic assumes a Region has infinite resources.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides:</td>
<td>Hosting and storage resources to Zones.</td>
</tr>
<tr>
<td>Consumes:</td>
<td>NA</td>
</tr>
<tr>
<td>Discovered through:</td>
<td>Cloud service accounts, such as accounts on Amazon AWS, or subscriptions on Microsoft Azure.</td>
</tr>
</tbody>
</table>

Monitored Resources

Turbonomic does not monitor resources directly from the region, but it does monitor the following resources, aggregated for the Zones in a region:

- **Virtual Memory**
 The percentage utilized of memory capacity for workloads in the zones.

- **Virtual CPU**
 The percentage utilized of VCPU capacity for workloads in the zones.

- **Storage Access**
 For environments that measure storage access, the percentage utilized of access capacity for the zones.

- **Storage Amount**
 The percentage utilized of storage capacity for the zones.

- **IO Throughput**
 For environments that measure IO throughput, the percentage utilized of throughput capacity for the zones.

- **Net Throughput**
 For environments that measure Net throughput, the percentage utilized of throughput capacity for the zones.

Actions

Turbonomic does not recommend actions for a Region.
Working With a Scoped View

By default, the Home Page shows a Global view of your environment. To drill down into specifics of your environment, you can set a scope to your Turbonomic session. A scoped view shows details about the specific entities in that scope. Once you have set a scope, you can use the Supply Chain to zoom in on a related tier to see details about the entities on that tier.

If you find the current scope to be useful, you can save it as a named group. Using named groups is an easy way to return to different scopes that you have saved.

Things You Can Do

- Scoping the Turbonomic Session (on page 83)
- Navigating With the Supply Chain (on page 91)
- Viewing Cluster Headroom (on page 92)

Scoping the Turbonomic Session

The default scope for the Home Page shows an overview of the global environment. What if you want to focus on less than the global environment? Assume you are responsible for a subset of workloads in your environment. This could be:

- Workloads managed on a single host cluster
- The workloads in a single datacenter
- A custom group of workloads you have created in Turbonomic

It's easy to set the session scope so that Turbonomic zooms in on the part of the environment that you want to inspect. Once you set the scope, you can get a quick picture of system health for that scope. If you find a certain scope to be useful, you can save it as a named group that you can return to later.

1. Navigate to the Search Page.

 Click to navigate to the Search Page. This is where you can choose the scope you want.
2. Choose the type of entities to search.

 In the Search Page, choose a type of entities that you want to search through. Find the list of entity types on the left. Select All to search the complete environment. Or you can focus on entities by type, by groups, or by clusters. When you select an entity type, the page updates to show all entities of that type.

3. Use Search to filter the listing.

 For example, if you're showing All and you search for "Development", then you will see all clusters, groups, and entities with "Development" in their names.

4. Expand an entry to see details.

 For example, expand a group or an entity to see utilization details and pending actions.

 NOTE:
 For hosts in the public cloud, utilization and capacity for host and datacenter resources don't affect Turbonomic calculations. When you expand an entry for a public cloud host, the details do not include information for these resources.
5. Select one or more entries to set the focus of the **Home Page**.
If you choose a category of entities to limit the list, then you can select one or more of the entities for your session scope. After you select the entities you want to include in your scope, click **SCOPE TO SELECTION** to set the session scope to those entities.

If you choose Groups or Clusters, then you can select a single entry to set the scope for your session. When you select an entry in the list, that sets the focus of the **Home Page**. For example, if you select a cluster in the **Search** listing, you set the **Home Page** focus to that cluster. Use the **Home Page** bread crumbs to set a different scope, or you can return to **Search** and set a different scope from there.

Overview Charts

The Overview Charts show your environment's overall operating health for the current session scope. A glance at the Overview gives you insights into service performance health, overall efficiency of your workload distribution, projections into the future, and trends over time.

The charts in this view show data for the current scope that you have set for the Turbonomic session. For the global scope, the charts roll up average, minimum, and peak values for the whole environment. When you reduce the scope (for example, set the scope to a cluster), the charts show values for the entities in that scope.

Some charts included in this view are:

- **Pending Actions**
 See all the actions that are pending for the current scope.

- **Health**
 Quickly see the health of the entities in this scope- How many entities have risks, and how critical the risks are.

- **Optimized Improvements**
 A comparison of utilization in your environment before executing the pending actions, and then after.

- **Capacity and Usage**
This chart lists resources that are used by the current scope of entities, showing utilization as a percentage of the capacity that is currently in use.

- **Multiple Resources**
 See the utilization over time of various resources that are used by the current scope of entities.

- **Top Entities**
 For example, Top Virtual Machines. These charts list the top consumer entities in the current scope.

- **Risks Avoided**
 Each action addresses one or more identified risks or opportunities in your environment. This chart shows how many risks have been addressed by the executed actions.

- **Accepted Actions**
 This chart shows how many actions have been executed or ignored, and whether they have been executed manually or automatically.

What You Can Do:
- Set scope: See *Scoping the Turbonomic Session (on page 83)*
- Create new charts: See *Creating and Editing Chart Widgets (on page 161)*

Setting Chart Focus

The charts update to reflect the focus that you have set for your viewing session. While viewing the Overview Charts, you can set the focus in different ways:

- **Set Supply Chain Focus**
 Choose a tier in the supply chain to set the view focus - see *Navigating With the Supply Chain (on page 91)*

- **Set Scope**
 Use **Search** to set the scope of the viewing session - see *Scoping the Turbonomic Session (on page 83)*

Chart Time Frame

You can set a time frame from recent hours to the past year, and set that to the charts in the view. Use the Time Slider to set specific start and end times within that range. The green section in the slider shows that you can set the time range to include a projection into the future. For this part of the time range, charts show the results you would see after you execute the current set of pending actions.

For most charts, you can also configure the chart to hard-code the time range. In that case, the chart always shows the same time scale, no matter what scale and range you set for the given view.
Note that Turbonomic stores historical data in its database. As you run Turbonomic in your environment for more time, then you can set a time range to show more history.

Details View

The Details View shows more details about the entities in your session scope. These charts focus on the utilization of resources by these entities, so you can get a sense of activity in that scope over time.

What You Can Do:

- Set scope: See Scoping the Turbonomic Session (on page 83)
- Create new charts: See Creating and Editing Chart Widgets (on page 161)

Setting Chart Focus

The charts update to reflect the focus that you have set for your viewing session. While viewing the Overview Charts, you can set the focus in different ways:

- Set Supply Chain Focus
 Choose a tier in the supply chain to set the view focus - see Navigating With the Supply Chain (on page 91)
- Set Scope
 Use Search to set the scope of the viewing session - see Scoping the Turbonomic Session (on page 83)
Chart Time Frame

You can set a time frame from recent hours to the past year, and set that to the charts in the view. Use the Time Slider to set specific start and end times within that range. The green section in the slider shows that you can set the time range to include a projection into the future. For this part of the time range, charts show the results you would see after you execute the current set of pending actions.

For most charts, you can also configure the chart to hard-code the time range. In that case, the chart always shows the same time scale, no matter what scale and range you set for the given view.

Note that Turbonomic stores historical data in its database. As you run Turbonomic in your environment for more time, then you can set a time range to show more history.

Scope Policies

The Policy View gives you a look at the Automation Policies that are set for the entities in the current scope. For each policy, you can see whether it has been enabled or disabled. In addition, you can create new policies and apply them to that scope.
Working With a Scoped View

To edit a policy, click the policy name. You can then change the policy settings, or enable/disable the policy.

To see the current policy settings, expand a settings category. For each setting, you can see which policy determines the value- Either the default policy or a custom policy that has been applied to this scope.

When you create a new policy, it automatically includes the current scope. You can add other groups to the policy scope if you like. Note that you can enable more than one policy for the same scope. If two policies apply different values for the same setting, then the most conservative value takes effect.

For more information, see Automation Policies (on page 220).

List of Entities

The list of entities is a quick way to drill down to details about your environment, so you can see specifics about resource consumption or state. For example, you can see the amount of capacity that has been assigned to a VM that is currently idle.

This list always updates to reflect the focus you have selected in the Supply Chain Navigator. When you select an entity type in the supply chain, the entities list updates to show the entities of that type for your current scope. For example, select Host to see a list of hosts in the current scope. For more information, see Navigating With the Supply Chain (on page 91)
Navigating With the Supply Chain

After you have set the scope of your Turbonomic session, you can use the Supply Chain to change the focus of the main view, and see details about different types of entities within the current scope.

Drilling Down in a Scoped Session

When you set a scope to your Turbonomic session, the Home Page shows information about your environment, including:

- **Overview**
 Charts and lists to give you an overview of your environment for the current scope. This overview corresponds to all the entities in scope.
- **Details** - Charts that give you a more detailed look at your environment for the given scope
- **Policies** - Any policies that are defined for the entities in the current scope
- **Entity Lists** - Details about the entities in the current scope
- **Pending Actions** - Actions that are pending for any entities in the current scope

The Supply Chain shows the currently selected tier of entities. The change the focus of the scoped view, select different tiers in the Supply Chain. The Policies, Entities List, and Pending Actions tabs update to focus on the tier you selected. These tabs show information for all the entities of that type that are in the current scope. For example, if you click the Host tier, these tabs update to show information about the hosts in your current scope.

To zoom in on a specific entity, you can click its name in the Entities List. This sets the scope to that specific entity. To return to the previous scope, use the browser's Back button.
Viewing Cluster Headroom

Cluster headroom shows you how much extra capacity your clusters have to host workloads. When you set the scope to a cluster, the **Home Page** then includes charts that show headroom for that cluster, as well as time to exhaustion of the cluster resources.

To view cluster headroom:

1. Navigate to the Search page.
2. Choose the Clusters category.
3. Select the cluster you want to view.
4. When the **Home Page** displays, scroll down to show the headroom charts.

 Make sure you have selected the Host tier in the supply chain navigator.

To calculate cluster capacity and headroom, Turbonomic runs nightly plans that take into account the conditions in your current environment. The plans use the Economic Scheduling Engine to identify the optimal workload distribution for your clusters. This can include moving your current VMs to other hosts within the given cluster, if such moves would result in a more desirable workload distribution. The result of the plan is a calculation of how many more VMs the cluster can support.

To calculate VM headroom, the plan simulates adding VMs to your cluster. The plan assumes a certain capacity for these VMs, based on a specific VM template. For this reason, the count of VMs given for the headroom is an approximation based on that VM template.

To specify the templates these plans use, you can configure the nightly plans for each cluster. For more information, see **Configuring Nightly Plans (on page 145)**.
Turbonomic Actions

After you deploy your targets, Turbonomic starts to perform market analysis as part of its Application Resource Management process. This holistic analysis identifies problems in your environment and the actions you can take to resolve and avoid these problems. Turbonomic then generates a set of actions for that particular analysis and displays it in the Pending Actions charts for you to investigate.

Turbonomic can generate the following actions:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision</td>
<td>Introduce new resource providers to update the environment's capacity.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>• Provisioning a host adds more compute capacity that is available to VMs.</td>
</tr>
<tr>
<td></td>
<td>• Provisioning a VM adds capacity to run applications.</td>
</tr>
<tr>
<td>Start</td>
<td>Start a suspended entity to add capacity to the environment.</td>
</tr>
</tbody>
</table>
Turbonomic Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize</td>
<td>Re-allocate resource capacity on an entity. For example, reduce vCPUs or vMem on a VM, or add volumes to a disk array.</td>
</tr>
<tr>
<td>Buy RI</td>
<td>For workloads that are good RI candidates, purchase RI capacity to move your environment toward the RI coverage that you desire.</td>
</tr>
<tr>
<td>Increase RI coverage</td>
<td>Increase RI coverage to reduce costs.</td>
</tr>
</tbody>
</table>
| Reconfigure | • Add necessary network access or reconfigure storage. For example, if a VM is configured to access a network that is not available on the host, the VM must reconfigure to use an available network.
• Reconfigure container pods. |
| Move | Change a consumer to use a different provider, such as moving a VM to a different host. Moving a VM to a different storage means relocating any file-based component that belongs to a virtual machine. |
| Suspend | Stop and set resources aside without removing them from the environment. For example, you might suspend an underutilized host to save it for some time when you really need it, or suspend a virtual machine to save money. |
| Delete | Remove storage (for example, datastores on disk arrays or unattached volumes). |

Actions by Entity Type

Turbonomic generates actions based on how entity types use or provide resources, and what each entity type supports. This table shows the actions that each entity type supports:

<table>
<thead>
<tr>
<th>Entity Type</th>
<th>Supported Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>For Guest OS processes, Turbonomic doesn't perform actions on applications. Instead, it performs actions on the host VMs. If utilization is high enough on an application, Turbonomic can create a new copy of the host VM. When an application is idle, it loses budget.</td>
</tr>
<tr>
<td>Application Server</td>
<td>Resize</td>
</tr>
<tr>
<td>Business Application</td>
<td>Turbonomic does not recommend actions for the Business Application, but it does recommend actions for the applications and infrastructure that the Business Application consumes.</td>
</tr>
<tr>
<td>Container</td>
<td>Suspend, Provision, Start, Move/Compute Scale, Resize</td>
</tr>
<tr>
<td>Container Pod</td>
<td>Suspend, Provision, Start, Reconfigure, Move/Compute Scale</td>
</tr>
<tr>
<td>Database server (On-prem)</td>
<td>Resize MEM, connections capacity, and transaction logs (Up/Down)</td>
</tr>
<tr>
<td>Database server (Cloud)</td>
<td>Resize (Up/Down)</td>
</tr>
<tr>
<td>Datacenter</td>
<td>Turbonomic does not recommend actions to perform on a datacenter.</td>
</tr>
<tr>
<td>Entity Type</td>
<td>Supported Actions</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Disk Array</td>
<td>Provision, Start, Resize (Up), Move/Compute Scale, Suspend</td>
</tr>
<tr>
<td>Host</td>
<td>Provision, Start, Suspend</td>
</tr>
<tr>
<td>Load Balancer</td>
<td>Turbonomic does not recommend actions to perform on the load balancer itself, but it does recommend actions to perform on the VMs that host the underlying applications.</td>
</tr>
<tr>
<td>Logical Pool</td>
<td>Provision, Start, Resize, Move/Compute Scale, Suspend</td>
</tr>
<tr>
<td>Network</td>
<td>Suspend</td>
</tr>
<tr>
<td>Storage (On-prem)</td>
<td>Move/Compute Scale, Provision, Resize, Delete (Datastore), Start, Suspend, Delete (Volume)</td>
</tr>
<tr>
<td>Storage (Cloud)</td>
<td>Move (to a different EBS tier)</td>
</tr>
<tr>
<td>Storage Controller</td>
<td>Provision</td>
</tr>
<tr>
<td>Switch / Fabric Interconnect</td>
<td>Provision, Start, Resize, Move, Suspend</td>
</tr>
<tr>
<td>Virtual Application</td>
<td>Turbonomic does not recommend actions to perform on the virtual application itself, but it does recommend actions to perform on the VMs that host bound applications. For example, a virtual application that manages three SQL databases sees a surge in requests that degrades performance across all databases. In this scenario, Turbonomic can start a new VM to run another instance of the database application, and bind it to the virtual application.</td>
</tr>
<tr>
<td>Virtual Datacenter</td>
<td>Provision, Resize, Move, Suspend</td>
</tr>
<tr>
<td>Virtual Machine (On-prem)</td>
<td>Move/Compute Scale, Provision, Reconfigure, Resize vCPU and vMem (Up/Down/Above Max/Below Min), Start, Storage Move, Suspend</td>
</tr>
<tr>
<td>Virtual Machine (Cloud)</td>
<td>Buy RI, Increase RI coverage, Resize vCPU and vMem (Up/Down), Start, Suspend</td>
</tr>
<tr>
<td>Virtual Volume</td>
<td>Delete, Move/Compute Scale</td>
</tr>
</tbody>
</table>

Action Types

Turbonomic performs the following general types of actions:

- **Placement** — Place a consumer on a specific provider (place a VM on a Host)
- **Scaling** — Resize allocation of resources, based on profitability
 - Resize up, shown as a required investment
 - Resize down, shown as savings
- **RI Optimization** — Purchase RIs for specific workloads or move to RI tiers that are more appropriate for your applications’ requirements
- **Configuration** — Correct a misconfiguration
• Start/Buy — Start a new instance to add capacity to the environment, shown as a required investment. For workloads that are good RI candidates, purchase RI capacity to move your environment toward the RI Coverage that you desire.
• Stop — Suspend an instance to increase efficient use of resources, shown as savings
• Delete — Remove storage (for example, datastores on disk arrays or unattached volumes)

Placement
Placement actions determine the best provider for a consumer. These include initial placement for a new entity, and move actions that change a consumer to use a different provider. For example, moving a VM assigns it to a different host. Moving a VM’s storage means the VM will use a different datastore.

Placement Constraints
When making placement decisions, Turbonomic checks for placement constraints to limit the set of providers for a given consumer. It respects automatic placement constraints, including cluster boundaries and DRS rules. It also considers user-configured constraints defined in a placement policy to ensure compliance to specific business requirements.
You can run plans to see what happens if you turn off constraints, or disable or enable certain placement policies.

Effective CPU Capacity
CPU processor speed is not necessarily an effective indicator of CPU capacity. For example, processor architecture can make a slower CPU have a greater effective capacity. Newer models of machines can often have fewer cores or less clock speed, but still have a higher effective capacity.

When placing VMs on hosts in the on-prem environment, Turbonomic discovers the effective CPU capacity of your hosts. This increases the accuracy of placement calculations so that newer, more efficient hosts will show a greater effective capacity than less efficient hosts that might have larger or faster processors.

To discover the effective capacity, Turbonomic uses benchmark data from spec.org. This benchmark data maps to effective capacity settings that Turbonomic uses to make placement calculations.
You can see a catalog of these benchmark data and choose from listed processors when you edit Host templates. For more information, see Selecting CPUs from the Catalog (on page 278).

Shared-Nothing Migration Actions
If you have enabled both storage and VM moves, Turbonomic can perform shared-nothing migrations, which move the VM and the stored VM files simultaneously. For details, see Shared-Nothing Migration (on page 244).

Cross-vCenter vMotion
VMware vSphere 6.0 introduces functionality that enables migration of virtual machines between different vCenter Server instances. Turbonomic supports this capability through Merge placement policies (see Creating Placement Policies (on page 216)). It considers cross-vCenter locations when calculating placement, and can recommend or execute moves to different vCenter servers.

Moves on the Public Cloud
On the public cloud you do not place workloads on physical hosts. In the Turbonomic Supply Chain, the Host nodes represent availability zones. Turbonomic can recommend moving a workload to a different zone, if such a move can
reduce your cloud cost. These moves recognize constraints, such as availability of instances types and RIs in the given zones.

In AWS environments, a VM can use Elastic Block Stores (EBS) or Instance Storage. If the VM’s root storage is EBS, then Turbonomic can recommend a VM move. However, because Instance Storage is ephemeral and a move would lose the stored data, Turbonomic does not recommend moving a VM that has Instance Storage as its root storage.

If a VM is running within a billing family, then Turbonomic only recommends moving that VM to other regions within that billing family.

In AWS environments that use RIs, Turbonomic recognizes Availability Zones that you have specified for your RI purchases. For move and resize actions, Turbonomic gives precedence to these RIs in the given zone. All else being equal for a given zone, if you have Zone RIs with reserved capacity and RIs that do not reserve capacity, Turbonomic will use the Zone RI first.

Scaling

Scaling actions update capacity in your environment. For vertical scaling, Turbonomic increases or decreases the capacity of resources on existing entities. For horizontal scaling it provisions new providers. For example, provisioning a host adds more compute capacity that is available to run VMs. Provisioning a VM adds capacity to run applications.

Turbonomic can provision the following:

• Application Servers (only with Provision scaling policy)
• Containers
• VMs
• Hosts
• Storage
• Storage Controllers (only for planning scenarios)
• Disk Arrays

Under certain circumstances, Turbonomic can also recommend that you provision a virtual datacenter.

Storage Resize Actions

Any storage resize action impacts both the storage entities and the entities managed by the given hypervisor. However, not all hypervisors recognize changes to the storage capacity. After executing a storage resize, Turbonomic indicates that the resize action has succeeded but a hypervisor might not show the corresponding change in storage capacity. If this occurs, then you must refresh the hypervisor target so Turbonomic can discover the storage changes.

To avoid this situation, you can set the action mode to Manual or Recommend for storage resize actions. In that way, you can perform the resizes yourself, and then manually refresh your hypervisors.

Scaling on the Public Cloud

On the cloud, scaling actions change the VM to a different instance type. These can include:

• Changing a VM to an instance type with different capacity
• Changing on-demand to RI

For these actions, the action list shows the current cost for the source workload, and also the projected cost given the change. To show the current cost, Turbonomic uses the actual costs for that workload. However, to show the projected cost it uses an estimate based on average utilization for the VM, for the costs of the given tier.
Note that scaling to an RI can result in running the VM on a larger instance when the cost is lower. This might occur even though the VM does not need that capacity and there are other smaller tiers available.

In Azure environments, there are circumstances where a VM resize can be especially disruptive. In a given region, the infrastructure can be made up of different clusters that have different sets of underlying hardware. Further, some tiers that are available in the given region are only available on different clusters. If Turbonomic recommends resizing from a tier on one cluster, to a tier on another cluster, then the resize action can take longer to complete than usual.

In both Azure and AWS environments, Turbonomic conforms to specific instance requirements as it generates resize actions. For more information, see:

- [Azure Instance Requirements](#) (on page 61)
- [AWS Instance Requirements](#) (on page 62)

RI Optimization

Turbonomic can recommend purchasing RIs for specific workloads or moving to RI tiers that are more appropriate for your applications' requirements. See the following charts in the dashboard for relevant information:

- **RI Inventory** chart: Shows a list of RI workloads that Turbonomic discovered, listed by tiers
- **RI Utilization** chart: Shows how well you have utilized your RI inventory
- **RI Coverage** chart: Shows the capacity of your current VM workload compared to the capacity of workload that is covered by RIs

RI optimization actions are not executed by Turbonomic users. They reflect RI reassignment, which the cloud provider will take care of.

Configuration

These are reconfigure and resize actions. Reconfigure actions can add necessary network access, or reconfigure storage. Resize actions allocate more or less resource capacity on an entity, which can include adding or reducing VCPUs or VMem on a VM, adding or reducing capacity on a datastore, and adding or reducing volumes in a disk array.

Turbonomic can reconfigure the following:

- Application Servers (only with Resize scaling policy)
- VMs
- Containers
- Storage
- Disk Arrays
- Virtual Datacenters

Start/Buy

Turbonomic can recommend that you start a suspended entity to add capacity to the environment, or purchase RI capacity to reduce costs for your current workload.

For RI purchases, the analysis looks at workload history for template families to identify RI candidates. This considers the count of workloads in a family, plus their hours of active-state condition, plus RI costs to arrive at the RI capacity you
Turbonomic Actions

should purchase. Note that different types of RIs have different costs, so the choice between using on-demand or RI pricing can vary depending on the RI Pricing configuration in your Budgets and Costs settings. For more information, see RI Purchase Profile (on page 284).

You should note that Turbonomic uses a weighted history of workload activity and that suspended VMs are also considered. The longer ago that the workload was suspended, the less weight it has in the RI Buy calculation.

The methods used to suspend the workloads and which affect the calculation of RI purchases are as follows:

• For the on-prem environment, if you use vCenter or another hypervisor to suspend VMs, then Turbonomic recognizes those suspended VMs and takes them into account as it calculates RI purchases. Note that Turbonomic does not automate SUSPEND VM actions for VMs in the on-prem environment.

• For the public cloud, if you use Turbonomic, vCenter, or another hypervisor to suspend workloads, then Turbonomic takes those suspended workloads into account as it calculates RI purchases. Note that Turbonomic does recommend and execute SUSPEND VM actions for VMs on the public cloud. For details, see Scheduling VM Suspend Actions in the Public Cloud (on page 271).

For AWS environments that use the Instance Size Flexible rules, Turbonomic can recommend that you buy multiple RIs of smaller instance types to cover the resource requirements of larger instance types. For example, rather than buying one t2.small RI, Turbonomic can recommend that you buy four t2.nano RIs to offer an equivalent discount.

For AWS environments that consolidate billing into Billing Families, Turbonomic recommends purchases for RIs that are within the given billing family. For more information, see AWS Billing Families (on page 202).

NOTE:
As Turbonomic calculates actions to purchase RI capacity, it assumes that any other pending actions for the workload will also be executed. For example, assume a workload running on an r4.xlarge template. If Turbonomic recommends changing that instance type to an m5.medium, it can recommend that you purchase an m5 RI to cover the workload and reduce costs. This purchase could be on a region that currently doesn't have any m5 workloads — The purchase recommendation assumes you will move the workload to that other region.

Stop

Stop actions suspend entities without removing them from the environment. Suspended capacity is still available to be brought back online, but is currently not available for use. Suspended resources are candidates for termination.

Turbonomic can suspend the following:

• Applications
• Application Servers (only with Provision scaling policy)
• Container Pods
• Disk Arrays
• Hosts
• Storage (on-prem)
• Virtual datacenter
• VMs (See Scheduling VM Suspend Actions in the Public Cloud (on page 271).)
Delete
Delete actions affect storage. For example, Turbonomic might recommend that you delete wasted files to free up storage space, or delete unused storage in your cloud environment to reduce storage costs.

Wasted Storage in Azure Environments
In Azure environments, Turbonomic can identify unmanaged storage as unattached volumes, recommend that you remove this unused storage, and then show estimated savings after you remove this storage and no longer pay for it. The savings that Turbonomic shows are estimates based on the overall cost for that storage, since Azure does not provide specific values for the cost per volume or cost for the amount of storage that is in use for a given volume. If the estimated savings appear unusually high, then you should identify which storage the actions will remove, and review your billing to calculate the costs with more precision.

Action Categories
Turbonomic groups entries in the Actions List by different categories. These categories do not strictly define the severity of an issue, but they indicate the nature of the issue.

Performance Assurance
Ultimately, the reason to manage workloads in your environment is to assure performance and meet QoS goals. When Turbonomic detects conditions that directly put QoS at risk, it recommends associated actions in the Performance category. You can consider these critical conditions, and you should execute the recommended actions as soon as possible.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Risks/Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bind a new application (to a virtual application)</td>
<td>• <Resource> Congestion</td>
</tr>
<tr>
<td>• Provision a new VM, Host, Datastore</td>
<td>High utilization of application managed by a load balancer.</td>
</tr>
<tr>
<td>• Increase or decrease the number of VCPUs</td>
<td>High utilization of resources on workload, host, or datastore.</td>
</tr>
<tr>
<td>• Provision a new container or container pod</td>
<td></td>
</tr>
<tr>
<td>• Resize heap for an application server</td>
<td></td>
</tr>
<tr>
<td>• Scale the resource capacity on an entity</td>
<td></td>
</tr>
</tbody>
</table>

Efficiency Improvement
Efficient utilization of resources is an important part of running in the desired state. Running efficiently maximizes your investment and reduces cost. When Turbonomic discovers underutilized resources, it recommends actions to consolidate your operations. For example, it can recommend that you move certain VMs onto a different host. This can free a physical machine to be shut down.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Risks/Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Move VM</td>
<td>• Overprovisioning</td>
</tr>
</tbody>
</table>
Prevention

Turbonomic constantly monitors conditions, and works to keep your environment running in a desired state. As it finds issues that risk moving the environment out of this state, it recommends associated actions in the Prevention category. You should attend to these issues, and perform the associated actions. If you do not, the environment may drift away from the desired state, and the QoS for some services may be put at risk.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Risks/Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Resize vCPU and vMem</td>
<td>• <code><Resource></code> Congestion</td>
</tr>
<tr>
<td>• Move VM or storage</td>
<td>High resource utilization on the named VM, host, or data store. For example, CPU congestion or memory congestion can occur on a VM or physical machine, or an IOPS bottleneck can occur on a datastore.</td>
</tr>
<tr>
<td>• Start VM or host</td>
<td>• Workload Balancing</td>
</tr>
<tr>
<td></td>
<td>Excess workload on a given physical machine that can be addressed by moving a VM to another host.</td>
</tr>
</tbody>
</table>

Compliance

A virtual environment can include policies that limit workload placement or availability of resources. It’s possible that the environment configuration violates these defined policies. It’s also possible that an entity is mis-configured in some way. For example, a VM might be configured to access a network that is not available in its current host cluster. In such cases, Turbonomic identifies the violation and recommends actions that bring the entity back into compliance.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Risks/Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Move VM</td>
<td>• Misconfiguration</td>
</tr>
<tr>
<td>• Move container</td>
<td>Container configuration is in violation of a policy.</td>
</tr>
<tr>
<td>• Provision VM, Host, Datastore</td>
<td>• Placement Violation</td>
</tr>
<tr>
<td>• Misconfiguration</td>
<td>The placement of a VM is in violation of a Turbonomic policy or an imported Placement Policy.</td>
</tr>
<tr>
<td>• Misconfiguration</td>
<td>• Misconfiguration</td>
</tr>
<tr>
<td>• The configuration violates discovered requirements. For example, a VM is configured to access a network that is not available from the current cluster.</td>
<td></td>
</tr>
</tbody>
</table>
Action Modes

Action modes specify the degree of automation for the generated actions. For example, in some environments you might not want to automate resize down of VMs because that is a disruptive action. You would use action modes in a policy to set that business rule.

Turbonomic supports the following action modes:

- **Disabled** — Do not recommend or perform the action

 When you disable an action, Turbonomic never considers that action in its calculations. For example, if you disable Resize for all VMs in a group, then analysis will still drive toward the desired state, but will do so without considering resize actions for those VMs. Disabled actions do not show in the Pending Actions List.

- **Recommend** — Recommend the action so a user can execute it via the given hypervisor or by other means

- **Manual** — Recommend the action, and provide the option to execute that action through the Turbonomic user interface

- **Automated** — Execute the action automatically

The Pending Actions charts only count actions in **Recommend** or **Manual** mode.

Automated actions appear in the following charts:

- **All Actions** chart on the **Home Page** and the On-prem Executive Dashboard
- **Accepted Actions** chart on the **Home Page**

Setting Action Modes

To set action modes for specific entities, you can edit the Turbonomic automation policies. This is how you specify the default action modes, or set special action modes for a given group or cluster. For more information, see Automation Policies (on page 220). For a listing of default action modes per entity type, Default Action Modes and Automation Support (on page 233).

Action Mode Overrides

Under some conditions, Turbonomic changes the action mode of an action from **Manual** to **Recommend**.

Turbonomic makes this change as a safeguard against executing actions that the underlying infrastructure cannot support. For example, assume you have VM move actions set to **Manual**. Then assume Turbonomic analysis wants to move a VM onto a host that is already utilized fully. In this case, there would be other actions to move workloads off of the given host to make room for this new VM. However, because moves are **Manual**, the host might not be properly cleared off yet. In that case, Turbonomic changes actions to move workloads to the host from **Manual** to **Recommend**.

For cloud environments, some instances require workloads to be configured in specific ways before they can move to those instance types. If Turbonomic recommends moving a workload that is not suitably configured onto one of these instances, then it changes the action mode from **Manual** to **Recommend**, and then describes the reason.
Working With the Generated Actions

When you start using Turbonomic, all the actions that the product generates appear as pending. You can view them in the Pending Actions charts and then decide whether to execute and/or automate them. You can also disable them.

Turbonomic will never execute actions automatically, unless you tell it to. If you examine the default policies that ship with the product, you will notice that these policies do not enable automation on any action (for details, see Default Action Modes and Automation Support (on page 233)). Turbonomic gives you full control over all automation decisions.

When you first see the pending actions, you execute many of them to see immediate improvements in performance and utilization. Over time, you develop and fine-tune your action-handling process to meet productivity goals and respond to changing business needs. This process could lead to the following key decisions:

- Disabling actions that should never execute, such as those that violate business rules
 Turbonomic will not consider recommending disabled actions when it performs its analysis.
- Allowing certain actions to execute automatically, such as those that assure QoS on mission-critical resources
Automation simplifies your task, while ensuring that workloads continue to have adequate resources to perform optimally. As such, it is important that you set the goal of automating as many actions as possible. This requires evaluating which actions are safe to automate, and on which entities.

- Continuing to let Turbonomic post certain actions so you can execute them on a case-by-case basis

For example, certain actions might require the approval of specific individuals. In this case, you would want Turbonomic to post those actions for review and only execute the actions that receive an approval.

These are the actions that you would look for in the Pending Actions charts. They no longer show after you execute them, if you disable or automate them, or if the environment changes in the next market analysis such that the actions are no longer needed.

What You Can Do:

- View and execute pending actions: See Pending Actions (on page 104).
- See the different display views for the pending actions charts: See Pending Actions Charts (on page 166).
- Scope pending actions in the Home Page: See Pending Actions Scope (on page 106).
- See a running history of generated and executed actions: See Actions Charts (on page 168).
- Review the default policies that drive the actions the product generates: See Default Action Modes and Automation Support (on page 233).
- Create and run plans to simulate different conditions, and see what actions will keep things healthy under those conditions: See Plan Management (on page 114).

Pending Actions

Turbonomic treats all the non-automated actions that it generates as pending and shows them in the Pending Actions charts.
To get the best results from Turbonomic, execute these actions promptly and consider automating as many of them as possible. You can execute these actions from the user interface or outside Turbonomic. To automate these actions, create an automation policy (on page 223) or change the action mode to Automated in the default policies (on page 221).

Turbonomic can execute up to five actions at a time, and queues any new incoming actions for later execution.

Default Pending Actions Charts

Each time you log in to the user interface, Turbonomic immediately shows the Pending Actions charts on the Home Page’s HYBRID view. These charts provide a summary of the actions that require your attention, and entry points to the Pending Actions List (on page 108).

NOTE:
You can also add these charts to any of your dashboards (on page 154).

By default, a text chart and a list chart display in the Home Page, with the scope set to Global Environment.

You can change the chart type by clicking the icon on the upper-right corner of the chart. For details about the available chart types, see Pending Actions Charts (on page 166).

Pending Actions - Text Chart

The text chart shows the estimated costs or savings associated with the pending actions, and the number of actions for each action type (on page 95).
Pending Actions - List Chart

The list chart shows a partial list of pending actions, ordered by the severity of the associated problems.

Pending Actions Scope

To perform Application Resource Management, Turbonomic identifies actions you can take to avoid problems before they occur. You can perform these actions manually, direct Turbonomic to perform the actions on command, or direct Turbonomic to perform actions automatically as they arise.

There are several ways to scope pending actions in the Home Page.
To view all pending actions, click **Show all Actions** in the Pending Actions chart.

Click one of the following to narrow the scope of pending actions:

- An entity type in the supply chain.

 Turbonomic generates actions based on how entity types use or provide resources, and what each entity type supports. For details on the actions that each entity type supports, see [Actions by Entity Type](#).

 Only entity types with risks (critical, major, or minor) have pending actions. Hover on the entity type to see a breakdown of risks.

- An action type in the text chart

- An entity name in the list chart

NOTE:

If you are in the **ON-PREM** or **CLOUD** view, the text chart displays by default. Switch to the list chart to see the entity names.

If you clicked **Show all Actions** or an action type, the [Pending Actions List](#) displays immediately.

If you clicked an entity type or an entity name, an Overview page displays first. In that page, click the **Actions** tab to view the Pending Actions List.
The Pending Actions List includes additional features to narrow the scope further. You can search for specific actions using meaningful keywords or use filters. For details, see **Pending Actions List (on page 108).**

Pending Actions List

The Pending Actions List includes all the actions that Turbonomic currently recommends for the given scope (for details, see **Pending Actions Scope (on page 106)).**

You can select actions to execute, and you can expand action items to see more details.

A. Actions List

Each row in the actions list shows:

- The specific action that Turbonomic recommends.
- If applicable, the estimated investment needed to successfully execute the action or the resulting savings after performing the action
- The [action category (on page 100)](#).

By default, actions display by the severity of the associated problems, indicated by the thin colored line before the checkbox. Use the Filter functionality to change the order by other categories.

Select one or several actions to execute and click **Apply Selected.**

If you see an action with:

- A grayed-out checkbox (⬤)

 The action is recommended-only, which means you have to perform the action outside Turbonomic. This occurs when the action mode is *Recommend* or if the underlying technology for the entity does not support automation. For details, see [Default Action Modes and Automation Support (on page 233)](#).

- A grayed-out checkbox and a prohibition symbol (⚔)

Turbonomic, Inc. www.turbonomic.com
You need to perform some prerequisite steps outside Turbonomic before you can execute the action. Hover on the checkbox to see the prerequisite steps.

B. Action Details

Click the arrow icon to expand the entry and view action details.

Action details include:

- A description of the recommended action, such as Scale Virtual Machine....

NOTE:

The action item gives the names of the affected entities. You can click on these entity names to drill down and set the Home Page scope to that specific entity. To return after drilling down to an entity in the action details, use the browser’s Back button.

- Immediately below the description, a summary of requirements, risks, opportunities, or reasons for the recommended action

- The impact of executing the action.

For more information, see [Action Details (on page 111)].

C. Search

For a long list of pending actions, use search to narrow the results.
D. Filter and Sort

When you click **Filter**, you can:

- Filter the list by **action type (on page 95)**, **action mode (on page 102)**, **action category (on page 100)**, action prerequisite, or any combination of these items.
- Sort the actions in ascending or descending order by severity, name of the action target, risk category, or savings amount.

Turbonomic determines action severity by the amount of improvement the affected entities will gain by executing the action. Action severities are:

- Minor — Issues that affect cost or workload distribution, but not impact the QoS your users will experience
- Major — Issues that can affect QoS and should be addressed
- Critical — Issues that affect the QoS that your environment can deliver, and you are strongly advised to address them

For example:

- To see only the actions that you can execute through the Turbonomic user interface, filter the list by action mode and select **Manually executable**.

- To see only resize actions that are manually executable and that give efficiency improvements, set the filter as follows:
E. Download

Download the pending actions list as a CSV file.

Action Details

Each action in the Pending Actions list comes with a description and additional details to help you understand why Turbonomic recommends it and what you would gain if you execute it.

In the image shown above, the action details indicate that scaling the virtual machine impacts RI coverage and virtual memory utilization in a meaningful way.

- By increasing RI coverage from 0% to 100%, the projected hourly on-demand cost drops to $0, bringing estimated savings of $0.107 per hour.
- By increasing the virtual memory from 8 GB to 15.3 GB, the virtual memory utilization drops from a near-critical 68% to an optimal 35.7%.
- Scaling the virtual machine also results in a slight increase in virtual CPU usage from 50% to 57.1%, which falls within the acceptable range.

NOTE:

In AWS environments, Turbonomic considers a VM's used and reserved memory to calculate virtual memory utilization, and drives actions based on the calculated value. This may not always match the values seen in CloudWatch or at the OS level of the VM.

At first glance, some individual actions might appear trivial and it is instinctively convenient to ignore them. It is important to keep in mind that executing a single action can impact other workloads in a meaningful way, helping move these other workloads closer to their desired state.

Actions Tips and Best Practices

To get the best results from Turbonomic’s Application Resource Management, you should set as many actions as possible to Automated. If you want to approve any changes, set the actions to Manual.

At first glance, individual actions might appear trivial and it is instinctively convenient to ignore them. It is important to keep in mind that executing a single action can impact other workloads in a meaningful way, helping move these other workloads closer to their desired state. However, if you find that a recommended action is not acceptable (for example, if it violates existing business rules), you can set up a policy with your preferred action.
In some cases, actions can introduce disruptions that you want to avoid at all costs. For example, during critical hours, Turbonomic might execute a resize action on a mission critical resource, which then requires that resource to restart. It is important to anticipate these disruptions and plan accordingly. For example, you can create a group for all critical resources, scope the group in an automation policy, set the action mode to Automated, and then set the schedule to off-peak hours or weekends. For details on setting schedules, see Setting Policy Schedules (on page 230).

Resize Actions

Allow VMs that have hot-add enabled to automatically resize up.

Use Tuned Scaling to automatically resize VM and storage resources when the resize amount falls within an acceptable range, and for Turbonomic to notify you when the amount falls outside the range so you can take the most appropriate action. For details, see Tuned Scaling (on page 241).

After executing a storage resize, Turbonomic indicates that the resize action has succeeded but the hypervisor might not show the corresponding change in storage capacity. If this occurs, perform a manual refresh of the hypervisor so it can discover the storage changes.

Move Actions

Turbonomic recommends automating host and storage migration.

Use placement constraints if you have placement requirements for specific workloads in your environment (for example, all production virtual machines moving only to specific clusters). Turbonomic can automatically import placement policies when you add a target, or you can create new placement policies. For more information, see Placement Policies (on page 215).

Cloud VMs with Failed Sizing

For workload on the public cloud, if Turbonomic tries to execute a move or a resize action but the action fails, then Turbonomic places the affected VM in a special group named Cloud VMs with Failed Sizing. Under normal circumstances this group will be empty. But in case some actions have failed, you can review the contents of this group to inspect the individual VMs. As soon as Turbonomic successfully executes a move or resize on a VM in this group, it then removes the VM from the group.

NOTE:

When Turbonomic places a VM in this group, it restarts the VM to ensure that it is running correctly with its original configuration.

By default Turbonomic does not include any action policies for this group. Whatever action mode is set to the given VMs remains in effect while the VMs are in this group. You can create a policy and scope the policy to this group. For example, assume you see typical failures for move actions that Turbonomic tries to execute during working hours. In that case, you can create a scheduling window that enables move and resize actions during off hours. That can help to automatically execute the actions and remove the VMs from this group.

Note that the VMs in this group could already be in a scope that is affected by another actions policy. Remember that with competing policies, the most conservative policy wins. When working with the Cloud VMs with Failed Sizing group, this can have unintended consequences. Assume you have VMs with automated resize and move actions, and you create a policy that sets move and resize to Manual for this group. Assume a failed resize action places a VM into this group. In that case the more conservative action mode takes effect, and the VM will use Manual for both resize and move. Because of a failed resize action, the VM neither automates subsequent actions to resize it nor actions to move it.
Plans: Looking to the Future

Use the Plan Page to run simulations for what-if scenarios that explore possibilities such as:

- Reducing cost while assuring performance for your workloads
- Impact of scaling resources
- Changing hardware supply
- Projected infrastructure requirements
- Optimal workload distribution to meet historical peaks demands
• Optimal workload distribution across existing resources

How Plans Work

To run a plan scenario, Turbonomic creates a snapshot copy of your real-time market and modifies that snapshot according to the scenario. It then uses the Economic Scheduling Engine to perform analysis on that plan market. A scenario can modify the snapshot market by changing the workload, adding or removing hardware resources, or eliminating constraints such as cluster boundaries or placement policies.

As it runs a plan, Turbonomic continuously analyzes the plan market until it arrives at the optimal conditions that market can achieve. When it reaches that point, the Economic Scheduling Engine cannot find better prices for any of the resources demanded by the workload — the plan stops running, and it displays the results as the plan’s desired state. The display includes the resulting workload distribution across hosts and datastores, as well as a list of actions the plan executed to achieve the desired result.

For example, assume a scenario that adds virtual machines to a cluster. To run the plan, Turbonomic takes a snapshot of the current market, and adds the VMs to the specified cluster. Turbonomic then runs analysis on the plan market, where each entity in the supply chain shops for the resources it needs, always looking for a better price — looking for those resources from less-utilized suppliers. This analysis continues until all the resources are provided at the best possible price.

The results might show that you can add more workload to your environment, even if you reduce compute resources by suspending physical machines. The recommended actions would then indicate which hosts you can take offline, and how to distribute your virtual machines among the remaining hosts.

Idle Workloads

Plans calculate optimal placement and optimal resource allocation for the given workload. However, plans do not include idle workloads. This is because an idle VM shows no utilization, so the plan cannot determine optimal placement or what percentage of allocated resources that workload will require when it restarts.

Plan Management
The Plan Management Page is your starting point for creating new plans, viewing saved plans, and deleting saved plans that you don't need anymore. To display this page, click **Plan** in the Turbonomic navigation bar.

- **Create new plans**

 To create a new plan, click the **NEW PLAN** button. See [Setting Up Plan Scenarios](on page 115).

- **View saved plans**

 After you create and run a plan, Turbonomic saves it and then shows it in the Plan Management Page. You can open the saved plan to review the results, or you can change its configuration and run it again.

 NOTE:

 You can also view saved plans from the Search page, under the **Plans** category.

- **Delete saved plans**

 To delete a saved plan, turn on the plan's checkbox and then click the **Delete** button.

- **Configure nightly plans**

 Turbonomic runs nightly plans to calculate headroom for the clusters in your on-prem environment. For each cluster plan, you can set which VM template to use in these calculations. See [Configuring Nightly Plans](on page 145).

 NOTE:

 By default, Turbonomic saves plans after you run them. However, when you update Turbonomic to a new major version these saved plans do not carry over to the update.

Setting Up Plan Scenarios

A plan scenario specifies the overall configuration of a plan. Creating the plan scenario is how you set up a what-if scenario to see the results you would get if you changed your environment in some way.

This topic walks you through the general process of setting up a plan scenario.

1. Plan Entry Points

You can begin creating a plan scenario from different places in the user interface:

- **From the Plan Page**

 Navigate to the Plan Page and click **NEW PLAN**. This plan has no scope. You will specify the scope after selecting the plan type.

- **From the Home Page**
To start a plan scenario from the **Home Page**, you must first go to the **Search** page to set the scope.

- **Cloud scope**

 If you set the scope to a *specific* Account, Billing Family, VM Group, or Region, you can start an Optimize Cloud plan.

- **On-prem scope**

 If you set the scope to a *specific* Cluster, Datacenter, Group, Storage Cluster, or Virtual Datacenter, you can start any plan. You may need to go through additional steps, depending on your chosen plan type. For example, if you scope to a cluster and choose the Add Virtual Machines plan type, the plan wizard prompts you to select the most suitable templates for the VMs you plan to add to the cluster.

For details, see [Scoping the Turbonomic Session](on page 83).

After setting the scope, the **Plan** button appears in the **Home Page**.

2. Plan Types

Select from the list of plan types. For more information, see [Plan Scenarios and Types](on page 121).
Turbonomic opens the appropriate plan wizard.

3. Plan Wizards

Each plan type includes a wizard to guide you through creating the scenario. The wizard leads you through the required configuration steps to create a plan that answers a specific question. After you make the required settings, you can skip ahead and run the plan, or continue through all the optional steps.
4. Plan Scope

All plans require a scope. For example, to configure a Hardware Refresh plan, you set the scope to the hosts that you plan to replace.

It usually helps to focus on a subset of your environment. For a very large environment, scoped plans run faster.

To narrow the scope, select a group from the list on the left side of the page. The page then refreshes to include only the entities belonging to that group.

Use **Search** or **Filter** to sort through a long list.
5. Additional Plan Information

The wizard prompts you for any additional information required to run the plan. For example, for a Hardware Refresh plan, you need to identify the hosts that will replace the scoped hosts.

![Replace Hosts](image)

6. Run the Plan

After you provide the minimum required information for running a plan, the wizard shows you the following options:

- **Run Plan**: Immediately run the plan.
- **Next: [Step]**: Continue with the rest of the wizard and then run the plan.
- **Skip to Configuration**: Skip the rest of the wizard and go to the Plan Page to:
 - Customize the plan settings.
 - See a preview of the plan scenario.
 - Run the plan.
NOTE: For a custom plan, the only option available is **Configure Plan**. Click this button to open the Plan Page, configure the plan settings, and then run the plan.

7. The Plan Page

The Plan Page first displays if you skip the wizard or as soon as you run a plan.

For a plan with a large scope, it might take some time before you see the results. You can navigate away from the Plan Page and check the status in the Plan Management Page. You can also cancel a plan that is in progress.

The Plan Page shows the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Plan name</td>
<td>Turbonomic automatically generates a name when you create a new plan. Change the name to something that helps you recognize the purpose of this plan.</td>
</tr>
<tr>
<td>B. Plan scope</td>
<td>Review the scope that you set in a previous step.</td>
</tr>
<tr>
<td></td>
<td>NOTE: It is not possible to change the scope of the plan in the Plan Page. You will need to start over if you want a different scope. To start over, go to the top-right section of the page, click the More options icon (), and then select New Plan.</td>
</tr>
<tr>
<td>C. Configuration toolbar</td>
<td>Configure additional settings for the plan. You can name the plan, change workload demand and the supply of resources, and specify other changes to the plan market. The toolbar items that display depend on the plan you are creating.</td>
</tr>
<tr>
<td>D. Configuration summary</td>
<td>Review the plan’s configuration settings. You can remove any setting by clicking the x mark on the right. Use the toolbar on top to change the settings. As you make changes to the plan scenario, those changes immediately appear in the Configuration summary.</td>
</tr>
</tbody>
</table>
Plan Page Sections

<table>
<thead>
<tr>
<th>Sections</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Additional options</td>
<td>See what else you can do with the plan.</td>
</tr>
<tr>
<td></td>
<td>• Run / Run Again:</td>
</tr>
<tr>
<td></td>
<td>◦ If a plan has not run, click Run and then check the plan results.</td>
</tr>
<tr>
<td></td>
<td>◦ If the plan has run and you want to run it again with a different set of configuration settings, click Run Again. This runs the plan scenario against the market in its current state.</td>
</tr>
<tr>
<td></td>
<td>◦ : Click to see more options.</td>
</tr>
<tr>
<td></td>
<td>◦ New Plan: Configure a new plan. You can choose this option if you want to change the scope of the current plan, which requires that you start over and configure a new plan.</td>
</tr>
<tr>
<td></td>
<td>◦ Reset view: Restore charts to their default views. For example, if you changed the commodities displayed in the Optimized Improvements or Comparison charts, you can discard those changes by choosing this option.</td>
</tr>
<tr>
<td></td>
<td>◦ Delete plan: Choose if you no longer need the plan.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sections</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Plan results</td>
<td>Review the results in the charts provided.</td>
</tr>
<tr>
<td></td>
<td>For a plan that has not run, you will see a Scope Preview chart and a one-time message instructing you to run the plan.</td>
</tr>
</tbody>
</table>

8. Plan Management

All the plans you have created display in the [Plan Management Page (on page 114)](#).

Plan Scenarios and Types

To simulate different plan scenarios, Turbonomic provides the following general types of plans:
Optimize Cloud

For the scope of your public cloud environment that you want to examine, run a plan to see all the opportunities you have to reduce cost while assuring performance for your workloads. This includes suggestions to buy RIs, comparisons of template and storage usage, and a comparison of current to optimized cost.

Optimize On-prem

See the effects of executing certain actions, such as scaling virtual machines, suspending hosts, or provisioning storage, to your on-prem environment.

Add Virtual Machines

Adding virtual machines increases the demand that you place on your environment's infrastructure. You can set up a plan to add individual VMs or groups of VMs in your environment, or based on templates.

Hardware Refresh

Choose hosts that you want to replace with different hardware. For example, assume you are planning to upgrade the hosts in a cluster. How many do you need to deploy, and still assure performance of your applications? Create templates to represent the upgraded hosts and let the plan figure out how many hosts you really need.
Host Decommission

If your environment includes underutilized hardware, you can use a plan to see whether you can decommission hosts without affecting the workloads that depend on them.

Virtual Machine Migration

Use this plan type to simulate workload migrations within your on-prem environment.

You can see whether you have enough resources to move your workload from its current provider group to another. For example, assume you want to decommission one datacenter and move all its workload to a different datacenter. Does the target datacenter have enough physical resources to support the workload move? Where should that workload be placed? How can you calculate the effect such a change would have on your overall infrastructure?

To calculate this information, create a plan that:

• Limits the plan scope to two datacenters (or clusters) — the one you will decommission, and the one that will take on the extra workload
• Removes all the hardware from the decommissioned datacenter
• Calculates workload placement across datacenter (or cluster) boundaries
• Does not provision new hardware to support the workload

Merge Clusters

See the effects of merging two or more clusters. For example, you can see if merging the clusters would require provisioning additional storage to support current demand, or if ignoring cluster boundaries would improve performance and efficiency.

Alleviate Pressure

Choose a cluster that shows bottlenecks or other risks to performance, and check to see the minimal changes you can make by migrating some workloads to another cluster. The cluster that is showing risks is a hot cluster, and the cluster you will migrate to is a cold cluster.

Custom Plan

With a custom plan, you skip directly to the plan configuration after specifying the plan scope, and set up whatever type of scenario you want.

You would also choose Custom Plan if you need to run plans that include containers and container pods.

Optimize Cloud Plan

Run the Optimize Cloud plan to see how you can maximize savings while still assuring performance for your applications and workloads. This plan identifies ways to optimize your costs by choosing the best templates (most adequate compute resources), regions, accounts, or resource groups to host your workloads. The plan also identifies workloads that can change over to RI pricing plans, and it compares your current costs to the costs you would get after executing the plan recommendations.
Configuring an Optimize Cloud Plan

For an overview of setting up plan scenarios, see Setting Up Plan Scenarios (on page 115).

1. **Scope**

You can scope by:

- **Accounts**
 Choose an AWS account or Azure subscription for the plan's scope. If you choose an Account for the scope, then the plan will not calculate RI Buy actions. To optimize RI purchases for a limited scope, choose a Billing Family.
- **Billing Families**
Include RI purchases in the planning for a scope that is limited to a single billing family. The plan calculates RI purchases through the billing family's master account.

- **Cloud Providers**

 See how you can optimize all your AWS or Azure workloads.

- **Resource Groups**

 Turbonomic discovers Azure resource groups. You can select one or more resource groups for the plan scope.

- **Regions**

 Focus the plan on a provider's region.

2. Optimization Settings

![Optimization Settings]

Choose from the given optimization options. Note that if you set a plan's scope to a resource group, Turbonomic will optimize services without recommending new RI purchases.
3. Reserved Instances Settings

For **RI Inventory**, the RIs for the current scope are selected by default. Click **Edit** to make changes.

Change **RI Purchase Profile** settings that match the cloud settings you have set up for real-time analysis. For more information about RI Purchase, see *RI Purchase Profile (on page 284)*.

- **OFFERING CLASS**
 For AWS environments, choose the offering class that corresponds to the RI types that you typically use in your environment.

- **TERM**
 For AWS and Azure environments, choose the payment terms you contract for your RIs. TERM can be one of **1 Year** or **3 Year**. Typically, longer term payment plans cost less per year.

- **PAYMENT**
 The payment option that you prefer for your AWS RIs:
 - All Upfront – You make full payment at the start of the RI term.
 - Partial Upfront – You make a portion of the payment at the start of the term, with the remain cost paid at an hourly rate.
 - No Upfront – You pay for the RIs at an hourly rate, for the duration of the term.

Working With Optimize Cloud Plan Results

After the Optimize Cloud plan runs, you can view the results to see how you can maximize savings or make other improvements to your cloud environment.
The plan results:

- Compare current to optimized costs, including on-demand compute, reserved compute, on-demand database, and storage costs
- Compare current and optimized breakdowns of templates used
- Compare breakdowns of storage tiers in use
- Project the RI coverage (how many workloads use RI) and utilization (percentage of RIs that are active)
- Identify candidates for Reserved Instance (RI) pricing, and show the cost benefits you can see by running those workloads on templates that are reserved on your public cloud provider.

Viewing the Results

The plan results include the following charts:

- **Cloud Cost Comparison**

 Cloud Cost Comparison charts compare public cloud costs before and after actions are executed, and show the resulting savings. You can also see workloads according to the types of actions that are pending for them. For example, you might see actions that address performance risks in undersized VMs or introduce efficiency opportunities in oversized VMs. For undersized VMs, costs should go up; for oversized VMs, costs should go down.

 Turbonomic can also recommend that you purchase RI capacity to reduce costs. The analysis looks at workload history to identify RI candidates. This considers the count of workloads in a family, plus their hours of active-state condition, to arrive at the RI capacity you should purchase. Since RI costs are incurred at the account level, the Cloud Cost Comparison chart will present RI costs or charges when you scope to an account or group of accounts (including a billing family).
For AWS clouds, Turbonomic can get the information it needs to display license costs for database instances. For Azure clouds, Turbonomic does not display database license costs because Azure does not make that information available.

- **Cloud Tier Summary By Type**
 This chart shows the types of templates you currently use, compared to the templates the plan recommends, including how many of each type, plus the costs for each.

![Cloud Template Summary By Type](chart)

To see a detailed breakdown of the template costs, click **SHOW CHANGES** at the bottom of the chart.

- **Volume Tier Breakdown**
 This chart shows the distribution of storage that supports your workloads in Current and Optimized graphs.

![Volume Tier Breakdown](chart)

The difference in the result reflects the number of unattached volumes. To see a list of unattached volumes, click **Show changes** at the bottom of the chart.

- **RI Coverage**
 See the percentage of workloads in your cloud environment that are running as Reserved Instances.
• **RI Utilization**

See how much of your purchased Reserved Instance inventory is utilized.

• **Existing RI Inventory**

This chart shows the RI workloads that Turbonomic discovers and lists them by templates. For a tabular listing, click **Show All** at the bottom of the chart. In the tabular listing, you can see if an RI expired before the specified purchase date. The word "Expired" appears in the Expiration Date column.

• **Recommended RI Purchases**

This chart shows the RIs the plan recommends to buy. To see the details, click **SHOW ALL** at the bottom of the chart.
Viewing Plan Actions

Click the Plan Actions tab on top of the page to view a list of actions that you need to execute to achieve the plan results. You can download the list of actions as a CSV or PDF file.

Re-Running the Plan

You can run the plan again with the same or a different set of configuration settings. This runs the plan scenario against the market in its current state, so the results you see might be different, even if you did not change the configuration settings.

Use the toolbar on top of the Configuration section to change the configuration settings.

- Actions > Virtual Machine
 Use this to enable or disable automatic Scale actions for the virtual machines in the plan.
- Actions > Reserved Instance
Change RI Purchase Profile settings that match the cloud settings you have set up for real-time analysis. For details, see Reserved Instances Settings (on page 126).

NOTE:
It is not possible to change the scope of the plan in the Plan Page. You will need to start over if you want a different scope. To start over, go to the top-right section of the page, click the More options icon (), and then select New Plan.

When you are ready to re-run the plan, click Run Again on the top-right section of the page.

Alleviate Pressure Plan

Use the Alleviate Pressure plan to find out how to migrate workloads from a stressed or hot cluster over to a cluster with more headroom. This plan shows the minimal changes you need to make to reduce risks on the hot cluster.

The plan results:

- Show the actions to migrate workloads from the hot cluster to the cold one
- Compare the current state of your clusters to the optimized state
- Show resulting headroom for both the hot and the cold clusters
Show trends of workload-to-inventory over time for both clusters

Alleviate Pressure plans make use of the headroom in your clusters. Headroom is the number of VMs the cluster can support, for CPU, Memory and Storage.

To calculate cluster capacity and headroom, Turbonomic runs nightly plans that take into account the conditions in your current environment. The plans use the Economic Scheduling Engine to identify the optimal workload distribution for your clusters. This can include moving your current VMs to other hosts within the given cluster, if such moves would result in a more desirable workload distribution. The result of the plan is a calculation of how many more VMs the cluster can support.

To calculate VM headroom, the plan simulates adding VMs to your cluster. The plan assumes a certain capacity for these VMs, based on a specific VM template. For this reason, the count of VMs given for the headroom is an approximation based on that VM template.

To specify the templates these plans use, you can configure the nightly plans for each cluster. For more information, see Configuring Nightly Plans (on page 145).

NOTE:
To execute, this plan must ignore certain constraints. The plan ignores cluster constraints to allow migrating workloads from the hot cluster to the cold one. It also ignores network constraints, imported DRS policies, and any Turbonomic that would ordinarily be in effect.

Configuring an Alleviate Pressure Plan

For an overview of setting up plan scenarios, see Setting Up Plan Scenarios (on page 115).

1. Scope

The wizard first gives you a list for you to choose the hot cluster. This is the cluster that shows risks to performance. The list sorts with the most critical clusters first, and it includes the calculated headroom for CPU, Memory, and Storage in each cluster.

2. Cold Cluster

After you select the hot cluster, choose the cold cluster.
Working With Alleviate Pressure Plan Results

After the plan runs, you can view the results to see how the migration of workloads off of your hot cluster affects your environment.
Viewing the Results

The results include the following charts:

- **Plan Actions**

 You can see a list of actions to reduce the pressure on the hot cluster. It's typical to see actions to move workloads from the hot cluster over to the cold cluster. If some VMs are overprovisioned, you might see actions to reduce the capacity for those workloads.

- **Hosts Optimized Improvements**

 This chart compares the current state of the hot cluster to its state after executing the plan actions. It displays the resource utilization of the cluster's hosts both before and after the plan.

- **Headroom**

 With these charts, you can compare the headroom between the hot and cold clusters.

- **Virtual Machines vs Hosts and Storage**

Re-Running the Plan

You can run the plan again with the same or a different set of configuration settings. This runs the plan scenario against the market in its current state, so the results you see might be different, even if you did not change the configuration settings.

Use the toolbar on top of the Configuration section to change the configuration settings.

![Alleviate Pressure](image)

The toolbar items that display are similar to the toolbar items for a custom plan. For details, see Configuring a Custom Plan (on page 135).

NOTE:

It is not possible to change the scope of the plan in the Plan Page. You will need to start over if you want a different scope. To start over, go to the top-right section of the page, click the More options icon (owered icon), and then select New Plan.

When you are ready to re-run the plan, click Run Again on the top-right section of the page.

Custom Plan

For an overview of setting up plan scenarios, see Settings Up User Plan Scenarios (on page 115).
When you create a custom scenario, you specify the plan scope as an initial step, and then skip the plan wizards and jump straight into setting up the plan parameters. You can name the plan, change workload demand and the supply of resources, and specify other changes to the plan market.

Configuring a Custom Plan

For an overview of setting up plan scenarios, see [Setting Up Plan Scenarios (on page 115)](#).

1. Scope

Specify the plan scope and then click **Configure Plan** at the bottom of the page.
2. Plan Configuration

Use the Plan Configuration toolbar to fine-tune your plan settings. You can change workload demand and the supply of resources, and specify other changes to the plan market.

2.1. Add

Add virtual machines, hosts, or storage to your plan. For example, when you add hosts, you increase the compute resources for the plan.

Copy from an Entity or Template

Choose an entity or template to copy. This describes the new entities that Turbonomic will add to the plan. For example, you can run a plan that adds new VMs to a cluster. If you copy from a template, then the plan adds a new VM that matches the resource allocation you have specified for the given template.

- Option 1: Copy from an entity
• Option 2: Copy from a template

If no existing template is satisfactory, create one by clicking **New Template**.

NOTE:
Turbonomic automatically adds any new template you create to the Template Catalog page (**Settings > Templates**).

It is not possible to use templates for containers or container pods.

Use the **Filter** option to show entities or templates with certain properties (name, number of CPUs, etc.). This makes it easier to sort through a long list.

Number of Copies to Add

After choosing an entity or template, it appears as an entry in the Configuration summary. Then you can set how many copies to add.

2.2. Replace
Replacing virtual machine is a way to change the properties of VMs in your plan market. When you replace workload, you select one or more VMs that you want to change, and then you select a template to use in their place. The list of changed VMs displays in the Configuration Summary. You can delete individual entries from this summary if necessary.

Replacing hosts or storage is a way to plan for a hardware upgrade. For example, if you replace your hosts or datastores with a more powerful template, the plan might show that you can use fewer hosts or datastores, and it will show the best placement for workloads on those entities. You begin by selecting the entities you want to replace, and when you click REPLACE, you can then choose a template that will replace them. Note that you can only choose a single template for each set of entities you want to have replaced. You can configure different replacements in the same plan, if you want to use more than one template.

2.3. Remove

Removing virtual machines frees up resources for other workloads to use.

Removing hosts or storage means you have fewer compute or storage resources for your workloads. If you think you have overprovisioned your environment, you can run a plan to see whether fewer hosts or less storage can still support the same workload.

2.4. Actions

See the effect of enabling or disabling actions on the entities included in the plan. For example, you might plan for more workload but know that you don't want to add more hardware, so you disable Provision of hosts for your plan. The results would then indicate if the environment can support the additional workload.

2.5. Ignore Constraints

Choose to ignore constraints (such as placement policies) for VMs in your environment.
By default, VMs are constrained to the cluster, network group, datacenter, or storage group that their hosts belong to. You can choose to ignore these boundaries.

For example, by default a plan does not consider moving VMs to physical hosts outside of the current cluster. If you disable the Cluster constraint for a VM in your plan, then the plan can evaluate the results of hosting those VMs on any other physical machine within the scope of your plan. If the best results come from moving that VM to a different cluster, then the plan will show that result.

NOTE:
If you are adding hosts to a plan, and use host templates, then you must turn on Ignore Constraints.

2.6. Placement Policies

By default, the plan includes all the placement policies that apply to the plan scope. Also, these policies are in their real-time state (enabled or disabled).

You can use these settings to enable or disable existing policies, or you can create new policies to apply only to this plan scenario. For information about creating placement policies, see Placement Policies (on page 216).

2.7. Utilization

Setting utilization by a certain percentage is a way to increase or decrease the workload for the scope of your plan and any entity added to the plan, or for specific groups. Turbonomic uses the resulting utilization values as the baseline for the plan.

Max Host Utilization levels specify the percentage of the physical resource that you want to make available in the given plan. By default, hosts have utilization set to 100%. For a given plan, you can set the utilization to a lower value. For example, assume you want to simulate High Availability of 25% for some hosts in the plan. In that case, you can select these hosts and set their utilization levels to 75%.
Max Storage utilization levels specify the percentage of the physical resource that you want to make available in the given plan. By default, storage has utilization set to 100%. For a given plan, you can set the utilization to a lower value. For example, assume you have one data store that you want to share evenly for two clusters of VMs. Also assume that you are creating a plan for one of those clusters. In that case, you can set the datastores to 50% utilization. This saves storage resources for the other cluster that will use this storage.

2.8. Baseline

Use these settings to set up the baseline of utilization metrics for your plan.

By default, the plan runs against the current state of your environment. You can set up the plan to add or remove entities, or otherwise affect the plan calculations. But the utilization metrics will be based on the current state of the plan. If you run the same plan multiple times, each run begins with a fresh view of your inventory.

You can select from the list of snapshots to load the utilization statistics from a previous time period into the plan. Use this to run the plan against utilization that you experienced in the past. For example, assume a peak utilization period for the month before the winter holidays. During the holidays you want to plan to add new capacity that can better handle that peak. You would set the baseline to the utilization you saw during that pre-holiday peak.

2.9. Desired State

The desired state is a condition in your environment that assures performance for your workloads, while it utilizes your resources as efficiently as possible and you do not overprovision your infrastructure. Turbonomic uses default Desired State settings to drive its analysis. You should never change the settings for real-time analysis unless you are working directly with Technical support. However, you can change the settings in a plan to see what effect a more or less aggressive configuration would have in your environment.
You can think of the desired state as an n-dimensional sphere that encompasses the fittest conditions your environment can achieve. The multiple dimensions of this sphere are defined by the resource metrics in your environment. Metric dimensions include VMem, storage, CPU, etc. While the metrics on the entities in your environment can be any value, the desired state, this n-dimensional sphere, is the subset of metric values that assures the best performance while achieving the most efficient utilization of resources that is possible.

The Desired State settings center this sphere on Performance (more infrastructure to supply the workload demand), or on Efficiency (less investment in infrastructure to supply the workload demand). The settings also adjust the diameter of the sphere to determine the range of deviation from the center that can encompass the desired state. If you specify a large diameter, Turbonomic will have more variation in the way it distributes workload across hosting devices.

For more information, see The Desired State (on page 17).

Working With Custom Plan Results

After the plan runs, you can view the results to see how the plan settings you configured affect your environment.
Viewing the Results

The results include the following charts:

- **Plan Summary Chart**

 This chart compares your current resources to the resources you would get after executing the plan.

 NOTE:
 Under some circumstances, this chart might not count "non-participating" entities in the real-time market, such as suspended VMs or hosts in a failover state. The following charts, on the other hand, count all entities in the real-time market, regardless of state:

 ◦ Scope Preview chart (displays before you run the plan)
 ◦ Optimized Improvements and Comparison charts

 Click **Show all** at the bottom of the chart to see savings or investment costs, or to download the chart as a CSV file.

- **Plan Actions Chart**

 This chart summarizes the actions that you need to execute to achieve the plan results. For example, if you run an Alleviate Pressure plan, you can see actions to move workloads from the hot cluster over to the cold cluster. If some VMs are overprovisioned, you might see actions to reduce the capacity for those workloads.

 The text chart groups actions by **action type (on page 95)**. The list chart shows a partial list of **actions (on page 93)**.
To view action details or download the list of actions as a CSV or PDF file:

◦ Click an action type in the text chart or an individual action in the list chart.
◦ Click Show all Actions at the bottom of the chart.

• Optimized Improvements Charts for Hosts, Storage, and Virtual Machines

The Optimized Improvements chart shows how the utilization of resources would change assuming you accept all of the actions listed in the Plan Actions chart.

◦ In many of these charts, you can change the commodities on display. To do this, go to the top-right section of the chart, click the More options icon (), and then select Edit. In the new screen that displays, go to the Commodity section and then add or remove commodities.

To restore the default commodities, use the Reset view option at the top-right section of the page.
◦ Click Show all at the bottom of the chart to see a breakdown of the current chart data by entity (for example, show CPU, Memory, and IO Throughput utilization for each host), or to download chart data as a CSV file.

• Comparison Charts for Hosts, Storage Devices, and Virtual Machines

A Comparison chart shows how the utilization of a particular commodity (such as memory or CPU) for each entity in the plan would change if you execute the actions listed in the Plan Actions chart.
Plans: Looking to the Future

° To change the commodity displayed in the chart, go to the top-right section of a chart and then select from the list of commodities.

To restore the default commodity, go to the top-right section of the page, click the More options icon (), and then select Reset view.

° Click Show all at the bottom of the chart to show a breakdown of the current chart data by entity (for example, show Virtual Memory utilization for each virtual machine), or to download the chart as a CSV file.

NOTE:
For the Storage Devices Comparison chart, if you set the view to VM Per Storage and click Show all, the total number of VMs sometimes does not match the number in the Plan Summary chart. This happens if there are VMs in the plan that use multiple storage devices. The Storage Devices Comparison chart counts those VMs multiple times, depending on the number of storage devices they use, while the Plan Summary chart shows the actual number of VMs.

Re-Running the Plan

You can run the plan again with the same or a different set of configuration settings. This runs the plan scenario against the market in its current state, so the results you see might be different, even if you did not change the configuration settings.

Use the toolbar on top of the Configuration section to change the configuration settings.

For details about these settings, see Configuring a Custom Plan (on page 135).

NOTE:
It is not possible to change the scope of the plan in the Plan Page. You will need to start over if you want a different scope. To start over, go to the top-right section of the page, click the More options icon (), and then select New Plan.

When you are ready to re-run the plan, click Run Again on the top-right section of the page.
Turbonomic runs nightly plans to calculate headroom for the clusters in your on-prem environment. For each cluster plan, you can set which VM template to use in these calculations.

For information about viewing cluster headroom, see Viewing Cluster Headroom (on page 92).

To calculate cluster capacity and headroom, Turbonomic runs nightly plans that take into account the conditions in your current environment. The plans use the Economic Scheduling Engine to identify the optimal workload distribution for your clusters. This can include moving your current VMs to other hosts within the given cluster, if such moves would result in a more desirable workload distribution. The result of the plan is a calculation of how many more VMs the cluster can support.

To calculate VM headroom, the plan simulates adding VMs to your cluster. The plan assumes a certain capacity for these VMs, based on a specific VM template. For this reason, the count of VMs given for the headroom is an approximation based on that VM template.

To set templates to use for the nightly plans:

1. Navigate to the Plan Page and click NIGHTLY PLAN CONFIGURATION.
This displays a list of all the nightly plans. Turbonomic creates a nightly plan for each cluster.

2. Click the plan that you want to configure.
 A fly-out appears that lists all the available templates.

3. Select the template you want for this plan.
 Choose the template and click Select.
Place: Reserve Workload Resources

From the Workload Placement Page, you can set up reservations to save the resources you will need to deploy workloads at a future date. Turbonomic uses its intelligent workload management to calculate optimal placement for these workloads, and then it reserves whatever resources the different hosts and storage entities will need to support those workloads.

To reserve workload resources from this page, you will:

• Define the workloads to deploy
 This includes choosing a VM template, setting how many instances to deploy, and specifying any placement constraints. The template specifies the resource requirements for each VM.

• Find the optimal placement
 Turbonomic runs a plan to determine the best placement for the workloads you defined. If your system has sufficient resources for the requested VMs, Turbonomic creates the reservation. Each reservation lists the providers that it recommends for the VMs.

Note that you can create a Current Reservation or a Future Reservation:

• Current Reservation
 To create a current reservation, set the reservation start date for today. The entry displays in the reservations list as RESERVED.

 Turbonomic adds the reserved VMs to your inventory, and calculates their placement as though they are real VMs. In this way, you can see how your environment accommodates the additional workload. A reservation remains current until you delete it, or the Reservation Date has passed.

 There’s no guarantee that your environment has enough resources to place all the VMs in your reservation. In that case, the entry displays in the reservations list as PLACEMENT FAILED. For as long as the reservation schedule is current, Turbonomic periodically tries to fulfill the reservation and place the reserved VMs on providers.

• Future Reservation
 To create a future reservation, set the reservation start date for some time in the future. The entry displays in the reservations list as FUTURE.

 Turbonomic does not calculate placement at this time — the future reservation saves the definition, and Turbonomic will calculate placement and reserve the VMs at the time of the reservation start date.
About Templates for Workload Placement

To specify the workload to deploy, you choose a VM template and then specify how many instances you want to deploy. The template specifies the compute and storage resources that each VM will require.

For more information about templates, see Templates: Resource Allocations for New Entities (on page 274).

About Placement Calculations

To place reserved VMs on Hosts and Datastores in your environment, Turbonomic measures the VM consumption of the following resources:

- MEM Overprovisioned
- CPU Overprovisioned
- StorageProvisioned

By default, storage overprovisioning is set to 200%, while Mem and CPU overprovisioning is set to 1000%.

These resources measure consumption of overprovisioned capacity for host MEM and CPU, as well as consumption of StorageProvisioned capacity on the datastores. Each reserved VM consumes a fixed amount of these resources, according to the settings in its template. By using the overprovisioned resources, Turbonomic can calculate the placement of reserved VMs even though they don’t consume any actual resources in the environment.

For example, assume a host machine with MEM capacity of 512 GB. By default, MEM overprovisioning is set to 1000%, so the MEM Overprovisioned capacity is 5 TB, or 5120 GB. Assume 10 reserved VMs created from a template that assigns 3 GB of virtual memory to each VM. In that case, Turbonomic calculates utilization of 30 GB for the reservation, which is approximately 0.59% of the host’s MEM Overprovisioned capacity.

Note that actual VMs and reserved VMs all use the overprovisioned resource. If the actual VMs start to utilize more memory, the utilization of MEM Overprovisioned will increase on the host. If it increases enough, Turbonomic can move VMs off of that host — it might move the actual VMs, or it might move the reserved VMs. Conversely, if utilization drops it can move more workload onto the host. In this way, the placement of reserved VMs remains up to date, and that placement will be valid when you choose to deploy the reservation.

Displaying the Workload Placement Page

To see the reservations that are currently active and to create new reservations, click the PLACE button in the Navigation Menu.
Creating a Reservation

Reservations set aside resources for anticipated workload. While a reservation is in the RESERVED state, Turbonomic continually calculates placement for the reserved VMs in the real-time market.

To create a reservation:
1. Navigate to the Workload Placement page.
2. Create a new reservation.
 In the Workload Placement page, click **CREATE RESERVATION**
 Turbonomic displays a list of templates. Choose the template you want, and click **NEXT: CONSTRAINTS**.
3. Optionally, specify placement constraints.
 In the **Constraints** section and choose which constraints to apply to this reservation.
 Constraints are optional, but note that these constraints are how you ensure that the template you have chosen is viable in the given locations that Turbonomic will choose.

NOTE:
In OpenStack environments, when you set up reservations to deploy workloads via OpenStack templates you must constrain the deployment to the OpenStack datacenters that support the given template.
The constraints you can choose include:

- **Scope**
 Choose the datacenter, virtual datacenter, or host cluster that you will limit the reservation to.

- **Placement Policy**
 This list shows all the placement policies have been created as Turbonomic Segments. Choose which placement policies the reservation will respect.

- **Networks**
 Turbonomic discovers the different networks in your environment. Use this constraint to limit workload placement to the networks you choose.

When you are done setting constraints, click **NEXT: RESERVATION SETTINGS**.

4. Make the reservation settings, and create the reservation.

To finalize the reservation, make these settings:

- **RESERVATION NAME**
 The name for the reservation. You should use unique names for all your current reservations. This name also determines the names of the reservation VMs that Turbonomic creates to reserve resources in your environment. For example, assume the name `MyReservation`. If you reserve three VMs, then Turbonomic creates three reservation VMs named `MyReservation_0`, `MyReservation_1`, and `MyReservation_2`.

- **VIRTUAL MACHINES COUNT**
 How many VMs to reserve.

 NOTE:
 You can include up to 100 VMs in a single reservation.

- **RESERVATION DATE**
 The time period that you want the reservation to be active. Can be one of:
 - **Reserve Now**
 Use this to calculate the ideal placement for a workload that you want to deploy today. Turbonomic begins planning the reservation immediately when you click CREATE RESERVATION. The reservation stays in effect for 24 hours – At that time Turbonomic deletes the reservation.
 - **Future Reservation**
 This executes the reservation for the date range you specify. Turbonomic begins planning the reservation on the day you set for START DATE. The END DATE determines when the reservation is no longer valid. At that time, Turbonomic deletes the reservation.

When you are finished with the reservation settings, click **CREATE RESERVATION**. Turbonomic displays the new reservation in the Workload Placement page. Depending on the reservation settings and your environment, the reservation can be in one of the one of the following states:

- **IN PROGRESS**
 Turbonomic is planning the placement of the reservation workloads.

- **FUTURE**
 Turbonomic is waiting for the START DATE before it will start to plan the reservation.

- **RESERVED**
Turbonomic has planned the reservation, and it found providers for all the VMs in the reservation. As your environment changes, Turbonomic continues to calculate the placement for the reservation VMs. If at any time it finds that it cannot place all the VMs, it changes the reservation to PLACEMENT FAILED.

- PLACEMENT FAILED

Turbonomic cannot place all the reservation VMs. As your environment changes, Turbonomic continues to calculate placement for the VMs. If at any time it finds that it can place all the VMs, it changes the reservation to RESERVED.

- INVALID

An error occurred while planning the placement of the reservation VMs.

NOTE:
The list of reservations refreshes whenever you open the Workload Placement page. To see changes in reservation state, navigate away from the page, and navigate back to it again.

Managing Reservations

Click the name to open the Reservation Settings fly-out

Expand the list entry for details

Click a provider name to drill down to that entity

The PLACE page displays the current list of reservations. You can expand items in the list to see some details, or you can click to view the full details. You can also select items to delete them, which cancels the reservation or deployment.

For an entry in the RESERVED state, you can click the entry name to open the Reservation Settings fly-out.

To delete a reservation, select it in the list and click the DELETE icon.

To see details about the provider entities, or the datacenter that is hosting the reserved VMs, click that entity name.
Viewing the Reservation in Your Environment

You can scope the Turbonomic view to show the reservation VMs in a supply chain. Once a reservation is in the RESERVED state, then within ten minutes reservation VMs will appear in the supply chain as entities.

Remember that the VM names are based on the reservation name. This means you can identify the VMs, or search for them. For example, assume you made a reservation named MyReservation, and you reserved 20 VMs. To scope Turbonomic to this reservation:

1. **Search for Virtual Machines.**

 Click to navigate to the Search Page. This is where you can choose the scope you want. In the Search page, choose Virtual Machines.

2. **Search for the Reservation VMs, and select them all.**

 Type the reservation name

 Click Select all

 To filter the list of VMs, type the reservation name in the Search field. For the MyReservation example, you can just type MyReserv. After the list filters, click Select all. In our example, you should see 20 reservation VMs.

3. **Set the Turbonomic scope to the reservation VMs.**

 Click **SCOPE TO SELECTION**. This displays the Home Page, with the view scoped to your reservation.
The Supply Chain shows the reservation VMs, and the entities that provide them their resources. You can click to zoom in on the other entities in the supply chain. For example, to inspect the hosts for these VMs, click on the Host ring.

Deploying Workloads to the Reserved Resources

When you reserve resources, you know that they will be available for you to deploy actual VMs in your environment. To deploy these VMs, you should:

1. Note the placement that your reservation has calculated.

 Expand the reservation entry in the Workload Placement page and note the datacenter, hosts, and storage that provide for your VMs. Alternatively, you can scope Turbonomic to your reservation and note the providers in the Supply Chain.

2. Delete the reservation.

 Before you deploy the VMs you want, you should delete the reservation. This frees up the Turbonomic market to manage the placement of the VMs you are about to deploy.

3. Deploy the actual VMs.

 In your Hypervisor user interface, deploy the VMs to the hosts and storage that you noted. When you are done, Turbonomic will manage their placement the same as it manages the rest of your environment.
Dashboards: Focused Views

Dashboards give you views of your environment that focus on different aspects of the environment's health. At a glance, you can gain insights into service performance health, workload improvements over time, actions performed and risks avoided, and savings in cost. For cloud environments, you can see utilization of reserved instances, potential savings, required investments, and the cost/performance of specific cloud accounts.

The Dashboards page lists all the dashboards that are available to you, including the Executive Dashboards and any custom dashboards that your account can access. To view a dashboard, click its name in the list.

From the Dashboard page, you can also create your own custom dashboards.

Things You Can Do

- Create custom dashboards:

 See [Creating and Editing Custom Dashboards (on page 158)](on_page_158).

- View the On-Prem Executive Dashboard:
See [On-Prem Executive Dashboard (on page 156)](#).

- View the Cloud Executive Dashboard:
 See [Cloud Executive Dashboard (on page 157)](#).

NOTE:
In charts that show tables, if the table contains more than 500 cells, then the User Interface disables the option to export the chart as PDF. You can still export the chart as a CSV file to load in a spreadsheet.

Executive Dashboards

The Executive Dashboard is a scorecard of your environment. It demonstrates how well you are improving performance, cost, and compliance by leveraging the Workload Automation that Turbonomic provides, as well as opportunities for further improvements that are available.

Turbonomic ships with two Executive Dashboards:

- On-Prem Executive Dashboard
- Cloud Executive Dashboard

NOTE:
Turbonomic ships Executive Dashboards with default configurations. To edit a dashboard, you must log in with the administrator user account. Users logged in with that account can add or remove chart widgets, and change widget scopes. For information about editing dashboards, see [Creating and Editing Custom Dashboards (on page 158)](#).
On-Prem Executive Dashboard

The On-Prem Executive Dashboard shows the overall performance, capacity, and compliance in your on-prem infrastructure. This includes insights into:

- **Actions History**
 - The **On-Prem Environment** chart widget shows you an overview of your on-prem environment that Turbonomic is managing and controlling. The chart displays the workloads and the infrastructure that Turbonomic discovered.
 - The **Workload Improvements** chart widget shows how the efficiency, performance, and policy risks associated with your workloads have disappeared as you have increased your adoption of Turbonomic Workload Automation. The chart tracks how your workloads have grown as your execution of actions have increased or decreased as your environment achieves and maintains its desired states over time.
 - The **All Actions** chart widget shows the number of actions that Turbonomic has generated versus the ones executed. This gives you an understanding of where there were more opportunities for improvement that were not taken in the past versus those that are available today.

- **Opportunities**
 - The **Workload by Performance**, **Workload by Compliance**, and **Workload by Efficiency** chart widgets indicate workload health by showing the risks that are currently in your environment and each classification of those risks. You can click **Show Action** on the chart to reveal all of the outstanding actions that need to be taken to resolve those risks on your workloads.
 - The **Necessary Investments** and **Potential Savings** chart widgets together project how the current actions to improve performance, efficiency, and compliance will impact your costs.
• **Current State**

 ◦ This chart shows the top clusters in your on-prem environment by CPU, memory, and storage capacity or utilization. In the default view, the chart shows the top clusters by CPU headroom (available capacity). It also shows time to exhaustion of cluster resources, which is useful for future planning (for example, you might need to buy more hardware).

 ◦ The *Virtual Machines vs Hosts and Storage* and the *Virtual Machines vs Hosts and Storage -Density* chart widgets show how your overall density has improved in your on-prem environment. A high count of VMs per host or storage means that your workloads are densely packed.

Cloud Executive Dashboard

![Cloud Executive Dashboard](image)

NOTE:

For the Version 7 family of Turbonomic, cloud features are Early Access, only. These features appear in the user interface and the documentation, but this version does not enable them for use.

The Cloud Executive Dashboard shows your overall cloud expenditures and how you can improve performance and reduce cost. This includes insights into:

• **Actions History**

 ◦ The *Cloud Environment* chart widget shows you an overview of your cloud environment that Turbonomic is managing and controlling. The chart displays the workloads, cloud service providers, and cloud accounts that you currently have set up as Turbonomic targets.

 ◦ The *Workload Improvements* chart widget shows how the efficiency, performance, and policy risks associated with your workloads have disappeared as you have increased your adoption of Turbonomic Workload Automation. The chart tracks how your workloads have grown as your execution of actions have increased or decreased as your environment achieves and maintains its desired states over time.

 ◦ The *Cumulative Savings* chart widget shows you the cost savings for executed cloud actions compared to the cloud actions that you have not executed (missed savings).
• Opportunities
 ◦ The **Workload by Performance**, **Workload by Compliance**, and **Workload by Efficiency** chart widgets indicate workload health by showing the risks that are currently in your environment and each classification of those risks. You can click **Show Action** on the chart to reveal all of the outstanding actions that need to be taken to resolve those risks on your workloads.
 ◦ The **Necessary Investments** and **Potential Savings** chart widgets together project how the current actions to improve performance, efficiency, and compliance will impact your costs.
 ◦ **Cloud Estimated Cost** chart widget shows estimated monthly costs and investments for the cloud. Monthly cost amounts are summarized as amounts with and without actions.

• Current State
 ◦ The **Top Accounts** chart widget shows all of the cloud accounts in your cloud environment and what the utilization is for each account. You can see the number of workloads, estimated monthly costs, saved by actions, and actions taken. In the default view, the chart shows the top cloud accounts and you can click **Show All** button to see all of the accounts. In the Show All list, you can also download the account cost data as a CSV file or PDF.
 ◦ The **Cost Breakdown by Tag** chart widget shows the tags you have assigned to your cloud resources and the costs associated with each of these tagged categories. The **Cost Breakdown by Cloud Service Provider** chart widget is an Expenses chart widget that shows your expenses for each cloud service provider.
 ◦ Usage of Reserved Instances

 Reserved Instances (RIs) reduce cost by offering a subscription-based payment plan. Turbonomic discovers these RI plans and tracks usage patterns to identify workloads that are good RI candidates. The Cloud Executive Dashboard shows whether you are getting the most out of your current RI strategy.

 The **RI Utilization** chart widget shows how well you have utilized the reservation inventory. The chart compares the capacity for all reservations versus the RI consumption by virtual machines.

 The **RI Coverage** chart widget compares the capacity of your current VM workload to the capacity of workload that is covered by Reserved Instances.

Creating and Editing Custom Dashboards

A custom dashboard is a view that you create to focus on specific aspects of your environment. You can create dashboards that are private to your user account, or dashboards that are visible to any user who logs into your Turbonomic deployment.

Two common approaches exist for creating custom dashboards:

• **Scope First**

 You can create a dashboard in which all of the chart widgets focus on the same scope of your environment. For example, you might want to create a dashboard that focuses on costs for a single public cloud account. In that case, as you add chart widgets to the dashboard, you give them all the same scope.

• **Data First**

 You might be interested in a single type of data for all groups of entities in your environment. For example, each chart widget in the dashboard can focus on Cost Breakdown by Cloud Service, but you set the scope of each chart widget to a different cloud region or zone.
Of course, you can mix and match, according to your needs. You can set any scopes or data sources to the chart widgets in a dashboard to set up whatever organization and focus that you want.

NOTE:
If you set a scope to your Turbonomic session, the specified scope does not affect your custom dashboards. For information about scoped views, see Working With a Scoped View *(on page 83)*.

Creating a Dashboard

To create a custom dashboard:

1. **Navigate to the Dashboard Page.**
 - Click to navigate to the Dashboard Page.
 - This page lists all dashboards that are available to you.
 - To view a dashboard, click its name in the list.

2. **Create a new dashboard.**
 - Click **NEW DASHBOARD** to add a new dashboard to your Turbonomic session. The dashboard appears with a default name and without chart widgets. The time range in the Time Slider is set to 24 hours by default.

3. **Name the dashboard.**
 - Give a name that describes the dashboard. If you will share the dashboard with all Turbonomic users, the name will help them decide whether to view it.

4. **Add chart widgets to the dashboard.**
 - Add as many chart widgets to the dashboard as you want. See Creating and Editing Chart Widgets *(on page 161)*.

5. **Optionally, set the dashboard access.**
 - Click **Gear** to change the setting.
Dashboard access can be:

- **Only Me** – The dashboard is only available to your Turbonomic user account.
- **All Users** – Every Turbonomic user can see this dashboard.

By default, access is set to **Only Me**.

As soon as you create a new dashboard, it appears in the list on the Dashboard Page. Users with access to it can click the dashboard name in the list to view it.

At any time, if you are an administrator or the dashboard owner, you can view and make the following changes to the dashboard:

- Add, edit, or delete widgets
- Change the dashboard name
- Change the dashboard access setting

For executive dashboards, only an administrator (username=administrator) can edit an executive dashboard.

Editing a Dashboard

If you have created a dashboard, you can change the name of the dashboard, its access settings, and its chart widgets. To change the chart widgets, see [Creating and Editing Chart Widgets](on page 161).

To edit a dashboard's name or change its access settings:

1. Navigate to the Dashboard Page.

 ![Dashboard Page](image)

 Click to navigate to the Dashboard Page.

2. Click the name of the dashboard that you want to edit.

3. Click **Gear** in the dashboard.

 ![Dashboard Edit Panel](image)

 In the dashboard's Edit fly-out, make your changes.

 For the dashboard's access, you can set:

 - **Only Me** – The dashboard is only available to your Turbonomic user account.
 - **All Users** – Every Turbonomic user can see this dashboard.

4. When you are done, close the fly-out panel.

 Your changes take effect when you close the fly-out.
Deleting a Dashboard

If you are an administrator or the dashboard owner, you can delete a custom dashboard. You cannot delete executive dashboards.

To delete a custom dashboard:

1. Navigate to the Dashboard Page.

 ![Dashboard Page](image)

 Click to navigate to the Dashboard Page.

 This page lists all dashboards that are available to you.

2. Delete one or more dashboards.

 In the list, choose the checkbox for each dashboard you want to delete and click Trash can.

Creating and Editing Chart Widgets

Turbonomic displays information about your environment in various chart widgets. To focus on the information you need, you can add new chart widgets to scoped views and dashboards, and you can edit existing chart widgets. You can also pull the corners of chart widgets to resize them and change the display order of chart widgets in dashboards.

When you create or edit a chart widget, you can choose a variety of settings. For example, in the Top Utilized chart widget, if you choose Clusters as the Entity Type, you can then choose Utilization as the Data Type and Storage Provisioned as the Commodity.

Creating a Chart Widget

To create a new chart widget:

1. Click Add Widget to open the Widget Gallery.

 ![Add Widget](image)

 In a scoped view: Click Add Widget.

 On a dashboard: Click ADD WIDGET.

 On a dashboard, click Add Widget at the top-right corner. In a scoped view, click Add Widget on the right above the charts.

2. Choose a chart widget in the Widget Gallery.

 The Widget Gallery is a list of thumbnail previews of chart widgets.

 You can scroll through the gallery or search it. For example, if you type "Health" in the Search field, the results are two chart widgets, Health and Workload Health. You can choose chart widgets from these categories:

 - Actions and Impact
 - Status and Details
 - Cloud
• On-Prem

To see the possible displays of a specific chart widget, use the horizontal scroll bar at the bottom of the thumbnail to scroll through the display choices.

To choose a chart widget to add it to your dashboard, click the thumbnail preview.

The Widget Preview window with the Edit fly-out opens.

3. Configure the settings for your chart widget.

Chart widget settings determine the data that the chart widget will show.

In the Edit fly-out, choose the settings and click Update Preview to display the result in the Widget Preview pane.

When you are satisfied with your settings, click Save. The chart widget is added to your dashboard.

For information about settings, see Chart Widget Settings (on page 163).

For example:

![Choose the settings in the Edit fly-out](image)

To delete a chart widget from your dashboard, choose Delete in the More options menu at the top-right corner of the chart widget.

Methods to Access Chart Widget Settings

Two methods exist for accessing the chart widget settings in the Edit fly-out:

- You can access the settings in the Edit fly-out when you add a chart widget to your dashboard after you click a thumbnail preview.
For an existing chart widget in a dashboard, you can choose **Edit** in the More options menu at the top-right corner.

Chart Widget Settings

Chart widget settings vary according to the type of chart widget. Also, depending on the value that you choose for a setting, additional settings may appear. The following is a list of frequently-used chart widget settings:

- **Scope**

 The set of entities in your environment that this chart widget represents. By default, the chart widget scope is set to **Global Environment**.

 For every type of chart widget, you have the option to set the chart’s scope. To do so:

 1. Click **Click to change scope** to open the Select Scope fly-out.
 2. In the Select Scope fly-out, choose the entity, group, or account that you want.

 The **ACCOUNTS** tab is available depending on the type of chart widget.

 Your choice appears in the **Scope** field.
• **Timeframe**

The timeframe for historical data or projections in the chart. Choices for the chart's timeframe are: Default, Last 2 Hours, Last 24 Hours, Last 7 Days, Last 30 Days, and Last Year.

If you set the timeframe to **Default**, the dashboard Time Slider controls the timeframe setting. For example, if your dashboard Time Slider is set to one month (1M), then all chart widgets with the Default timeframe in that dashboard are set to one month and show information for one month. Note that the dashboard Time Slider does not override the other specific timeframe settings.

• **Chart Type**

The chart widget's display type. Most chart widgets can display horizontal bar or ring charts. Other display choices can include tabular data, band chart, stacked bar, line, or area charts.

NOTE:

For summary charts like horizontal bar and ring charts, when the legend has more than four categories, the remaining categories are represented as a fifth category named "Other."

• **Entity Type**

The type of entities or their data that you want to display in this chart widget. Choices vary (for example, Applications, Hosts, Virtual Data Centers, Storage Devices, and so on).

• **Commodity**

The resources that you want this chart widget to monitor. Some charts can monitor multiple commodities. Choices vary (for example, CPU, Memory, Virtual Storage, and so on).
Chart Types

Turbonomic provides many different types of charts in the Widget Gallery. To design dashboards, you should be familiar with the data each chart presents. These charts provide information on actions, impact, status of your environment, and details about specific entities, cloud, and on-prem environments.

• Actions and Impact Chart Types (on page 166)
 ◦ Pending Actions Charts (on page 166)
 ◦ Actions Charts (on page 168)
 ◦ Risks Avoided Charts (on page 169)
 ◦ Improvement Statistics Charts (on page 170)
 ◦ Optimized Improvements Charts (on page 171)
 ◦ Cloud Cost Comparison Charts (on page 172)
 ◦ Potential Savings or Investments Charts (on page 173)

• Status and Details Chart Types (on page 173)
 ◦ Health Charts (on page 173)
 ◦ Basic Info Charts (on page 174)
 ◦ Capacity and Usage Charts (on page 175)
 ◦ Multiple Resources Charts (on page 176)
 ◦ Resources Charts (on page 177)
 ◦ Top Utilized Charts (on page 179)
 ◦ Workload Health Charts (on page 181)
 ◦ Environment Charts (on page 182)
 ◦ Workload Improvements Charts (on page 182)

• Cloud Chart Types (on page 183)
 ◦ Billing Breakdown Charts (on page 183)
 ◦ Estimated Cost Breakdown Charts (on page 184)
 ◦ Expenses Charts (on page 185)
 ◦ Cloud Tier Breakdown Charts (on page 186)
 ◦ Location Charts (on page 187)
 ◦ Cost Breakdown By Tag Charts (on page 187)
 ◦ Cumulative Savings Charts (on page 188)
 ◦ RI Inventory Charts (on page 188)
 ◦ Recommended RI Purchases Charts (on page 190)
 ◦ RI Coverage Charts (on page 192)
 ◦ RI Utilization Charts (on page 193)
 ◦ Cloud Estimated Charts (on page 193)
 ◦ Storage Summary Charts (on page 194)
 ◦ Monthly Savings or Investments Totals Charts (on page 194)

• On-Prem Chart Types (on page 196)
 ◦ Density Charts (on page 196)
 ◦ Ports Charts (on page 196)
Actions and Impact Chart Types

These chart widgets provide information on actions, pending actions, risks that you avoided, improvements, cloud cost comparison, and potential savings or investments.

Pending Actions Charts

Pending Actions charts show the actions that Turbonomic recommends to improve the current state of your environment.

Chart Type

You can set the display to:

- Text
- Ring Chart
- Horizontal Bar
- List

Examples:

- Text

The text chart shows the number of actions for each action type. It gives a quick visual indication of the kinds of actions that are pending. For details, see Action Types (on page 95).

- Ring Chart

The ring chart counts the number of actions for each action type. It gives a quick visual indication of the kinds of actions that are pending. For details, see Action Types (on page 95).
• **Horizontal Bar**

The horizontal bar chart counts the number of actions for each action type. It gives a quick visual indication of the kinds of actions that are pending. For details, see [Action Types](on page 95).

• **List**

The list chart shows an abbreviated listing of the actions for the chart's scope. For details about the different actions generated by the product, see [Actions](on page 93).
At the bottom of the chart, click **Show All Actions** to see a [full list](on page 108) of pending actions that are in the scope of the chart, along with action details and controls to execute actions.

Actions Charts

Actions charts keep a running history of the actions that Turbonomic has recommended, which actions you have ignored, which ones you have executed manually, and which ones Turbonomic executed.

These charts use historical data from the Turbonomic database. You can set the chart to show hourly, daily, weekly, or monthly data points.

Filter

You can filter the chart to show **All Actions** (actions that Turbonomic has generated, along with the execution status) or **Executed Actions** (only actions that receive an approval to execute).

NOTE:
If an action is not executed because it is no longer valid, Turbonomic shows the action as **Rejected**.

Chart Type

You can set the display to:

- Stacked Bar Chart
- Tabular
- Area Chart
- Text

Examples:

- Stacked Bar
• Tabular

To see the full list (on page 108) of actions, click Show All at the bottom of the chart.

Risks Avoided Charts

As you execute the actions Turbonomic has recommended, you improve your environment’s health and avoid risks to performance or cost. These charts show how many risks you have avoided over time. For example, the charts can show how many over-provisioning and congestion risks you avoided.

Chart Type

You can set the display to:

• Text
• Ring Chart
• Horizontal Bar
Improvement Statistics Charts

Turbonomic automatically executes or recommends actions, depending on the automation policies that you set up. For the recommended actions, you can use Improvement Statistics charts to show how utilization of resources would change assuming you accept all of the pending actions.

Depending on the entity type, you can specify the following types of Improvement Statistics charts:

- Application Resources
- Consumed Application Resources
- Historical Performance
- Workload Density
- Compute Resources
- Provided Compute Resources
- Consumed Compute Resources
- Storage Resources
- Network Resources

Chart Type

The chart shows information as Tabular. It lists the given resources, comparing current utilization with the expected utilization after you execute all pending actions.

Entity Type

The chart shows utilization improvements for a specific entity type, such as applications or virtual machines. You can change the entity type by using the Edit functionality. Go to the top-right section of the chart, click the More options icon (⋯), and then select Edit. In the new screen that displays, select from the given entity types. Entity types you can choose include:

- Applications
- Application Servers
- Zones
- Business Applications
- Chassis
- Containers
- Data Centers
- Databases
- Database Servers
- Disk Arrays
- IO Modules
- Internet
- Load Balancer
- Logical Pool
- Networks
- Hosts
- Regions
Dashboards: Focused Views

- Storage Devices
- Storage Controllers
- Switches
- Virtual Applications
- Virtual Data Centers
- Virtual Machines
- Volumes

Optimized Improvements Charts

Turbonomic automatically executes or recommends actions, depending on the policies that you set up. For the recommended actions, you can use Optimized Improvements charts to show how utilization of resources would change assuming you accept all of the pending actions (on page 166).

Entity Type

Entity types you can choose include:

- Applications
- Application Servers
- Zones
- Business Applications
- Chassis
- Containers
- Data Centers
- Databases
- Database Servers
- Disk Arrays
- IO Modules
- Internet
- Load Balancer
- Logical Pool
- Networks
- Hosts
- Regions
- Storage Devices
- Storage Controllers
- Switches
- Virtual Applications
- Virtual Data Centers
- Virtual Machines
- Volumes
Commodity

Depending on the entity type, you can add different resource commodities that you want to measure. For a chart of Hosts, you can measure commodities such as CPU, Memory, and even network flow between VMs that are on the same host (In-Provider Flow) or on other hosts (In-DPOD or Cross-DPOD Flow).

Display

Optimized Improvements charts show two bar charts for the entities that are in scope – one for current consumption, and the other for the consumption you would expect to see if you execute all the actions.

Example: An Optimized Improvements chart for applications

Cloud Cost Comparison Charts

Cloud Cost Comparison charts compare public cloud costs before and after actions are executed, and show the resulting savings. You can also see workloads according to the types of actions that are pending for them. For example, you might see actions that address performance risks in undersized VMs or introduce efficiency opportunities in oversized VMs. For undersized VMs, costs should go up; for oversized VMs, costs should go down.

Turbonomic can also recommend that you purchase RI capacity to reduce costs. The analysis looks at workload history to identify RI candidates. This considers the count of workloads in a family, plus their hours of active-state condition, to arrive at the RI capacity you should purchase. Since RI costs are incurred at the account level, the Cloud Cost Comparison chart will present RI costs or charges when you scope to an account or group of accounts (including a billing family).

Notes:

- Turbonomic can only estimate the cost that would result if you execute pending RI Buy actions. This is because the full data is only available after you actually purchase the RIs. Estimates reflect costs you would see after scaling workloads to the newly purchased RI capacity. For scaling to already-purchased RIs, the chart reflects the actual costs.
- Setting the Cloud Cost Comparison chart to a global scope is the best way to view the total impact of Turbonomic actions in your environment.
- Use the Edit functionality to change the entity types in the chart. Entity types include:
 - Databases
 - Database Servers
 - Volumes
Potential Savings or Investments Charts

These charts show potential savings or necessary investments in your cloud expenditure, assuming you execute all the pending actions that Turbonomic identifies as a result of its analysis.

For example, if some workloads risk losing performance, Turbonomic might recommend scaling actions for the virtual machine to increase resources. The Necessary Investments chart shows how these actions translate to an increase in expenditure.

On the other hand, if there are pending actions to scale a virtual machine, which result in reduced monthly costs, the Potential Savings chart shows the reduced cost that would result from those actions.

This chart also track RI optimization actions. Virtual machine scaling actions may result in a freed up RI, which can now be applied to a different virtual machine. RI optimization actions reflect the potential savings resulting from reassigning the RI to a different virtual machine.

NOTE:
RI optimization actions are not executed by Turbonomic users. They reflect RI reassignment, which the cloud provider will take care of.

If you disable resize actions for VMs, the savings reflected in the Potential Savings chart and in the Cloud Cost Comparison chart might be different.

Type
You can choose **Potential Savings** or **Necessary Investments**.

Chart Type
You can set the display to:

- Text
- Ring Chart
- Horizontal Bar

Status and Details Chart Types
These chart widgets provide information on the status of your environment and details about specific entities.

Health Charts
Health charts show the current status of your environment, by entity type. For example, you can choose to show the health of all hosts in your environment, or the health of all the workloads running on a public cloud region.
Entity Type

Entity types you can choose include:

- Applications
- Application Servers
- Zones
- Business Applications
- Chassis
- Containers
- Data Centers
- Databases
- Database Servers
- Disk Arrays
- IO Modules
- Internet
- Load Balancer
- Logical Pool
- Networks
- Hosts
- Regions
- Storage Devices
- Storage Controllers
- Switches
- Virtual Applications
- Virtual Data Centers
- Virtual Machines
- Volumes

Chart Type

You can set the display to:

- Text
- Ring Chart
- Horizontal Bar

Basic Info Charts

The Basic Info charts provide an overview of a single entity or individual Azure resource group that you have chosen as your scope.

Type

You can choose:

- **Entity Information**
This chart shows basic information (ID, Name, Type, State, Severity, Target Name, and so on) for the scoped entity or Azure resource group.

- **Related Tag Information**

 This chart lists any available tag information for the scoped entity or Azure resource group. For example, in a cloud environment, if a virtual machine has tags applied to it, the chart shows those tags for the virtual machine.

Display

The chart shows the information as Tabular.

Capacity and Usage Charts

These charts list the resources for the selected entity type, showing their allocated capacity and how much of that capacity is in use.

Entity Type

Entity types you can choose include:

- Applications
- Application Servers
- Zones
- Business Applications
- Containers
- Data Centers
- Database Servers
- Disk Arrays
- Load Balancer
- Logical Pool
- Networks
- Hosts
- Regions
- Storage Devices
- Storage Controllers
- Virtual Applications
- Virtual Data Centers
- Virtual Machines
- Volumes

Commodity

Depending on the entity type, you can add different resource commodities that you want to measure. For example, for a chart of Virtual Machines, you can measure commodities such as virtual CPU, memory, and storage.
Display
The chart shows the information as Tabular.

Multiple Resources Charts
Multiple Resources charts show the historical utilization of commodities for the scoped entity or a group of entities. The vertical bar shows the current moment – plots that extend to the right project utilization into the future.

Entity Type
Entity types you can choose include:
- Applications
- Application Servers
- Zones
- Business Applications
- Containers
- Data Centers
- Database Servers
- Disk Arrays
- Load Balancer
- Logical Pool
- Networks
- Hosts
- Regions
- Storage Devices
- Storage Controllers
- Virtual Applications
- Virtual Data Centers
- Virtual Machines
- Volumes

Commodity
Depending on the entity type, you can add different resource commodities that you want to measure. For example, for a chart of volumes, you can measure commodities such as IO throughput, storage access, and storage amount.

Show Peaks
Edit the chart and choose the Show Peaks checkbox to include peak information in the chart.

Display
The chart shows the historical utilization and, if chosen, the peak information as a Line chart.
Resources Charts

Resources charts show the utilization of a resource over time, for the entities in the chart’s scope. The chart title shows the resource that you are plotting, as well as the chart’s current scope.

To see finer details about your environment, you can set up charts that show utilization of specific commodities. For example, you can set up a dashboard with a number of Resources charts with their scopes set to the same cluster. Such a dashboard gives you a detailed look at the health of that cluster. Or you could make a dashboard with each chart scoped to a different cluster, but have all the charts show the same resource utilization.

Commodity

You can set a Resources chart to one of the following resources:

• Ballooning
 Percentage of the host’s ballooning capacity that is in use.
• CPU / CPU Allocation / CPU Provisioned
 Percentage of CPU cycles that are devoted to processing instructions.
• Collection Time
 Percentage of CPU time spent on garbage collection.
• Connection
 The connections in use, as a percentage of the maximum connections allowed on the database. Database configuration determines the capacity for this resource.
• DBCacheHitRate
 Percentage utilization of the database server’s allocated cache hit rate, where a greater value indicates fewer disk reads for data.
• DBMem
 The memory in use by the database, as a percentage of the allocated capacity. Database configuration determines the capacity for this resource. Note that for databases, Turbonomic uses this resource to drive actions, instead of the VMem on the hosting VM. This means that actions are driven by the actual memory consumption on the database.
• Disk Array Access
• Host LUN Access
• Heap
 The heap capacity allocated for an application. Charts show the percentage of capacity that is used by an application.
• IO Throughput
 Data rate through the host’s IO adapter, measured in KBytes/sec.
• Memory / Memory Allocation / Memory Provisioned
 Host memory, measured in Kbytes.
• Number of Disks
• Net Throughput
 Data rate through the host’s Network adapter, measured in Kbytes/sec.
• Port Channel
Dashboards: Focused Views

- Q16 / Q1 / Q2 / Q32 / Q4 / Q64 / Q8 VCPU
- Response Time
 Percentage utilization of a resource’s allocated response time.
- SLA Commodity
- Storage Access
 Storage access operations per second.
- Storage Allocation
- Storage Amount
 Datastore capacity, measured in Kbytes.
- Storage Latency
 Percentage of allocated latency that is in use on the storage.
- Storage Provisioned
 How much the given storage is over-subscribed. Storage Provisioned capacity is the storage capacity multiplied by the Storage Overprovisioned Percentage (200 by default). The higher this value, the greater the risk that storage is over-committed.
- Swapping
 The rate of memory swapping to disk, in bytes per second.
- Tenancy Access
- Threads
 Percentage of thread capacity that is consumed by an application server.
- Transaction
 Percentage of an application’s allocated transaction capacity that is in use.
- TransactionLog
 The disk space devoted to transaction logging for a database.
- Virtual CPU
 The CPU capacity allocated to a VM guest OS, measured in MHz.
- Virtual Memory
 The memory allocated to a VM guest OS, measured in Kbytes.
 Note that percentages of allocated VMem are measured against the VMem limit (if set) or the allocated VMem capacity, whichever is less. This is also true in reports and recommended actions. For example, assume a VM with allocated VMem of 8 GB, but a limit of 4 GB. In this case, the percentage in a chart shows the percentage utilized of 4 GB.
- Virtual Storage
 Virtual storage allocated to a VM, measured in Kbytes.

Options

Choose Show Utilization to see averages and peaks/lows, or Show Capacity to see averages and peaks/lows versus capacity.

The Show Summary option adds a ring chart to the view, showing the current utilization of the selected commodity.
Chart Type

You can set the following types of display:

- **Line Chart**

 A line plot showing resource utilization over time. The vertical green bar shows the current moment – Plots that extend to the right project utilization into the future.

- **Band Chart**

 Lines plot average capacity and average used. The chart shows a band where its thickness indicates peaks and lows.

Top Utilized Charts

Top Utilized charts show the entities or groups with the most utilization.

Entity Type

Entity types you can choose include:

- Accounts (on page 181) (public cloud)
- Applications
- Application Servers
- Zones
- Business Applications
- Chassis
- Clusters (on page 180) (of hosts)
- Containers
- Data Centers
- Databases
- Database Servers
- Disk Arrays
- IO Modules
- Internet
- Load Balancer
- Logical Pool
- Networks
- Hosts
- Resource Groups (on page 181)
- Regions
- Storage Devices
- Storage Controllers
- Switches
- Virtual Applications
- Virtual Data Centers
- Virtual Machines
- Volumes
• Wasted Files

Data Type
Depending on the entity type (for example, Clusters), you can choose Headroom or Utilization information in the chart.

Commodity
Depending on the entity type, you can add one or more different resource commodities that you want to measure.

Display
The chart lists the top entities by utilization of the commodities that you or the system has set. Depending on the entity type and scope, you can sort the information. To view the utilization details, hover over the entity to display the tooltip. For cloud entities, the estimated cost for those entities also display.

To drill down to an entity, click the entity name in the chart. This sets the scope to that entity.

Click the ACTIONS button for an entity to examine the actions that are pending for it, and then decide which ones are safe to execute.

Example: A top clusters chart which can be sorted by CPU headroom or CPU exhaustion.

Top Clusters Chart
This chart shows the top clusters in your on-prem environment by CPU, memory, and storage capacity or utilization. In the default view, the chart shows the top clusters by CPU headroom (available capacity). It also shows time to exhaustion of cluster resources, which is useful for future planning (for example, you might need to buy more hardware).

To calculate cluster capacity and headroom, Turbonomic runs nightly plans that take into account the conditions in your current environment. The plans use the Economic Scheduling Engine to identify the optimal workload distribution for your clusters. This can include moving your current VMs to other hosts within the given cluster, if such moves would result in a more desirable workload distribution. The result of the plan is a calculation of how many more VMs the cluster can support.
Click the ACTIONS button for a given cluster to see the actions that Turbonomic recommends to keep cluster resources in the desired state, and then decide which ones are safe to execute.

Click Show All to see all of the clusters. In the Show All list, you can also download capacity data as a CSV file. Click a cluster name to set the scope to that cluster and view more details about its current capacity and health.

Top Accounts Chart

This chart lists all the managed accounts in your cloud environment. It highlights the estimated monthly cost for each account and the savings you would realize if you execute the pending actions. Click the ACTIONS button to examine these actions and decide which ones are safe to execute. You can also click an account name to set the scope to that account.

Click Show all to view additional information, including the total estimated monthly cost for all accounts, and the number of actions that have been executed for individual accounts or workloads, along with the resulting savings. You can also download the accounts list as a CSV file.

NOTE:
Specific RIs can provide savings for multiple accounts. However, individual accounts show the full RI savings, which can result in exaggerated savings for that account. If you add up savings for the individual accounts, the result might be greater than the overall RI savings you would see in the Cloud Cost Comparison chart.

Top Resource Groups Chart

This chart highlights the estimated monthly cost for the top resource groups in your cloud environment and the savings you would realize if you execute the pending actions. Click the ACTIONS button to examine these actions and decide which ones are safe to execute. Click a resource group to set the scope to that group.

The chart also counts actions that have been executed for individual groups, and then shows the resulting savings.

Workload Health Charts

Workload Health charts show the health of workloads from the compliance, efficiency improvement, and performance assurance perspectives. These charts use current (real-time) data for the workloads chosen for the chart widget scope.

Chart Type

You can set the display to:

- Text
- Ring Chart
- Horizontal Bar

Breakdown

You can choose:

- **Workload by Compliance**
A virtual environment can include policies that limit availability of resources. It’s possible that the environment configuration violates these defined policies. In such cases, Turbonomic identifies the violation and recommends actions that bring the entity back into compliance.

• **Workload by Efficiency Improvement**

 Efficient utilization of resources is an important part of running in the desired state. Running efficiently maximizes your investment and reduces cost. When Turbonomic discovers underutilized workloads, it recommends actions to optimize operations and save money.

• **Workload by Performance Assurance**

 Ultimately, the reason to manage workloads in your environment is to assure performance and meet QoS goals. When Turbonomic detects conditions that directly put QoS at risk, it recommends associated actions to assure performance. You can consider these critical conditions, and you should execute the recommended actions as soon as possible.

Workload Health charts indicate actions that you should consider to improve the health of workloads. To see a list of actions, click **Show Actions** at the bottom of the chart.

Environment Charts

Environment charts provide an overview of your environment. They show the targets that you are managing and count the entities that Turbonomic has discovered through those targets. For example, you can display the cloud service providers, hypervisors, and the number of workloads.

Environment Type

You can choose one of the following views:

- Hybrid (both on-prem and cloud)
- Cloud
- On-Prem

Display

The chart shows the information as a Text chart type.

Workload Improvements Charts

Workload Improvements charts track the health of workloads in your environment over time, and map the health to the number of actions Turbonomic has executed in that time period.

In the chart, you can see the significance and value of executed actions:

- **Workloads Overall**

 This is the total number of workloads over time.

- **Workloads with Performance Risks**

 These are the workloads that are not performing well.

- **Inefficient Workloads**
These are the workloads that are running on under-utilized hosts or are not being utilized.

- **Workloads Out of Compliance**
 These are the workloads that are violating a placement policy. Workloads that are not in compliance might be running on a host or placed on storage, for example, that violate a placement policy.
- **Executed actions**
 Actions that Turbonomic executed.

The vertical line shows when the last data point was polled in your environment.

Environment Type

You can choose one of the following views:

- Hybrid (both on-prem and cloud)
- Cloud
- On-Prem

Display

The chart shows the information as a Line chart.

Cloud Chart Types

These chart widgets provide information on the status of your cloud environment.

For many cloud chart widgets that display costs and savings, Turbonomic uses the billing reports from your cloud service providers to build a picture of your overall costs. The data includes all costs that the service provider includes in the billing report. Turbonomic parses these reports into the formats that it uses for the cloud chart widgets.

NOTE:
In order for Turbonomic to access AWS monthly reports, you must have created a Cost and Usage report in your AWS account and you must store it in an S3 bucket.

For more information, see [Displaying AWS Spend In Turbonomic](#).

Billing Breakdown Charts

Billing Breakdown charts enable you to track your expenditure on cloud services, so you can track overall cost, cost by region, or cost by cloud accounts. Turbonomic discovers pricing for cloud services through the cloud accounts and Azure subscriptions that you configured as targets. Turbonomic uses the billing reports from your cloud service providers to build a picture of your overall costs. The data includes all costs that the service provider includes in the billing report.

Chart Type

You can set the display to:

- Text
- Ring Chart
Estimated Cost Breakdown Charts

To keep track of your costs on the public cloud, you can see costs for database, database servers, storage devices, virtual machines, and workloads. In this way, you can go to your dashboard or any view that includes this chart to quickly see how your cloud costs develop over time.

The Estimated Cost Breakdown charts show:

- **Total Compute with RI**: The cost of resources, including the cost of Reserved Instances, that are allocated to a workload template.
- **Attached Storage**: The cost for the utilization of storage on different storage tiers.
- **License**: The cost of the operating system (OS) if the virtual machine is not on an open source operating system. It can also be the cost of an application license.
- **IP**: The cost of a static IP address for the virtual machine, if you have contracted to use a static IP address.
- **Spot Compute**: The cost of running spot instances.
- **Other**: If the legend has more than four categories, "Other" represents the remaining categories. For this chart, "Other" represents a combination of other costs like network costs, for example.

Entity Type

Entity types you can choose include:

- Databases
- Database Servers
- Storage Devices
- Virtual Machines
- Workloads

Chart Type

You can set the display to:

- Text
- Ring Chart
- Horizontal Bar

Example: Cost Breakdown for Virtual Machines
Expenses Charts

To help you manage costs for your public cloud environment, Turbonomic tracks compute, storage, license, and IP costs for the workloads in your environment. Are you spending too much on your cloud resources? You can see how your expenses evolve and keep track of these costs over time.

Turbonomic uses the cost for services and workload expenses to track your cloud spend. See Tracking Cloud Cost (on page 34) for more information about service cost data, compute, storage, license, and IP costs.

Commodity

You can choose:

• **Expenses**
 See your hourly expenses over time, as well as overall monthly and yearly costs.

• **Average Expenses**
 See your average cost per Virtual Machine, as well as overall monthly and yearly costs.

• **Billed Cost by Service Provider**
 See costs over time for each cloud service provider that you use in your cloud environment. For example, you can compare the costs you incur on AWS to costs on Azure.

 You can open more than one account from a single service provider. If you are running workloads on different service providers, then this chart shows the distribution of costs across them.

• **Billed Cost by Account**
 See costs over time for each account that you have set up as a target in Turbonomic.

 Each public cloud target that you configure for Turbonomic represents a public cloud account. You can choose one or more specific accounts depending on your configured public cloud targets. This chart gives you a quick read out of your costs. You can see whether one account shows unusually high cost, or perhaps an account is hardly used at all and you can consider closing it down.

• **Billed Cost by Service**
 This chart shows costs over time for each cloud provider service that you use in your cloud environment. For example, you can see costs for your Amazon EC2 instance or AWS Cost Explorer.

 To evaluate your use of different services, you can follow your expenditure for each one. Note that for AWS clouds the service names begin with “Amazon” or “AWS”. Other services show the names as they are presented in the service provider’s billing report. You can also set the scope of this chart to an Azure Resource Group or a group of Resource Groups.

• **Workload Cost Breakdown**
 This chart shows costs over time for each component of your cloud utilization. The vertical line indicates when the last data point was polled from your environment. Data points to the right of the vertical line are projections into the future.

 You can see costs for:
 ◦ On-Demand Compute
 ◦ IP (static IPs for workloads)
 ◦ License (OS license)
 ◦ Storage
Dashboards: Focused Views

◦ Spot Compute
◦ RI Compute

Chart Type
You can set the display to:

• Line Chart
• Stacked Bar Chart
• Area Chart

Reading a Cost Breakdown Chart
The chart tracks cost over time and displays a tooltip with the date for the data point and the given values.

Notes:
• The costs displayed in these charts might be different from those in the Cloud Cost Comparison charts. This is because the Cloud Cost Comparison charts also include additional cost-contributing items, such as unattached volumes and unused RIs.
• Cost information comes from billing reports. As you change the time scale, Turbonomic divides the reported information into the appropriate time units to match that scale. However, the source remains the same - Changing the scale does not affect the source data, or increase data polling.

Cloud Tier Breakdown Charts
Cloud Tier charts show the cloud tiers that Turbonomic discovers for the chart widget scope. For example, if the Chart Widget Scope is set to All Cloud VMs and the Entity Type is set to Virtual Machine, the chart shows all the cloud tiers that the workloads use.

Entity Type
You can choose any entity type in the list.

Chart Type
You can set the display to:

• Text
Location Charts

Location charts show cloud provider regions in a world map for which there are discovered workloads. Click on any region to examine more detailed information in a scoped view.

Display

The chart shows the regions in countries in a Map chart.

Cost Breakdown By Tag Charts

Cost Breakdown By Tag charts show the costs for tagged cloud entities and commodities that Turbonomic discovered.

Tag Settings

Choose a key from the list and one or more corresponding values.

Custom X-axis

You can also define an X-axis using one of two commodities, Cost Breakdown by Zone or Cost Breakdown by Region, and choose one or more values for the commodity.

Chart Type

You can set the display to:

- Area Chart
- Stacked Bar Chart

Example: The Tag setting key is workload-type and the values are other and production.
Cumulative Savings Charts

Cumulative Savings charts show you the cost savings for executed cloud actions compared to the cloud actions that you have not executed (missed savings).

For this chart’s scope, you can choose an account or subscription, a group of accounts or subscriptions, or use the default, Global Environment. If you use the default Global Environment, the chart will automatically use all cloud accounts for its scope. Other examples of scope settings are: An AWS billing family, an Azure subscription, the All AWS Accounts predefined group, or the All Azure Accounts predefined group.

For all actions except Suspend, savings are estimated based on the hourly cost of workload price differences and 730 hours per month of workload usage. Savings from Suspend actions are estimated based on the hourly cost of workload price differences and actual suspend times as defined in the suspension policy.

Missed savings are estimated based on the hourly cost of workload price differences and the number of hours that recommended actions exist in the system.

Cumulative Savings charts calculate cost savings and missed savings over time since your update of Turbonomic to version 6.4.2. Historical data stored in the database prior to version 6.4.2 is not included.

Chart Type

You can set the display to:

- Text and Area Chart
- Area Chart
- Text

Example: Text and Area

In this example, Turbonomic has accumulated the cost savings and missed savings for a year.

![Cumulative Savings Chart](image)

In the chart legend, you can also click on Savings or Missed Savings to change the display of the chart. Click the item again to reset the chart. For example, if you want to see a trend in just the savings information, click Savings in the legend.

RI Inventory Charts

RI Inventory charts show the Reserved Instance workloads that Turbonomic discovers, and lists them by the templates they use.
To see the RI information for each template, click **Show all** at the bottom of the chart. If your scope includes both AWS and Azure cloud targets, click **AWS** or **Azure**. Click any column heading to sort the list. When you choose one or more checkboxes, the total count, cost, and savings appear at the top.

NOTE:
It could take Turbonomic up to a day to discover newly purchased Azure RIs.

Chart Type

You can set the display to:

- Text
- Ring Chart
- Horizontal Bar

Examples:

- Horizontal Bar

![RI Inventory Chart](image)

• Viewing the AWS Show all list:

To examine your RI inventory, click any column heading to sort the list. For example, you can sort by:

- Public cloud account to see which reserved instance IDs are associated with a particular account.
- Expiration Date to see which RIs are due to expire. If an RI has expired, the word "Expired" appears in the Expiration Date column.
- Effective Cost to assess the costs of RIs.

The monthly cost is calculated for the RI depending on the type of payment. For an All Upfront payment, it is the prepayment amortized over the RI life. For a Partial Upfront payment, it is the prepayment amortized over the RI life, plus the monthly charge. For a No Upfront payment, it is the monthly charge.

Turbonomic calculates the effective costs and the estimated utilization from the real RI pricing plans that are available to the target public cloud accounts.
Recommended RI Purchases Charts

Recommended RI Purchases charts show the projected inventory of pending Reserved Instance purchases as generated by Turbonomic. The charts show the Reserved Instance workloads that Turbonomic discovers, and lists them by the available templates.

To see the RI information for each template, click **Show all** at the bottom of the chart. If your scope includes both AWS and Azure cloud targets, click **AWS** or **Azure**. Click any column heading to sort the list. For example, you can sort the list by the break-even period (The time at which RI savings will exceed the purchase cost of the RI, rounded to the month). When you choose one or more checkboxes, the total count, up-front cost, and savings appear at the top.
Chart Type

You can set the display to:

- Text
- Ring Chart
- Horizontal Bar

Examples:

- Horizontal Bar

```
Recommended RI Purchases

- 14 Standard_B1.s
- 13 1.GP
- 10 Standard_B1.m
- 10 Standard_F2.s
- 46 Other Templates
```

- Viewing the AWS Show all list

```
Reserved Instances

AWS  AZURE
Total 46  Count: 46  Up-Front Cost $47,696  Lifetime Net Savings $47,696

<table>
<thead>
<tr>
<th>RESERVATION</th>
<th>PRODUCT NAME</th>
<th>QUANTITY</th>
<th>PLATFORM</th>
<th>TERM</th>
<th>LOCATION</th>
<th>UP-FRONT CSTE</th>
<th>NET SAVINGS</th>
<th>REMAINING TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA. Development</td>
<td>Standard B1.s</td>
<td>1</td>
<td>Linux</td>
<td>1 Year</td>
<td>USA West (Oregon)</td>
<td>8,514</td>
<td>8,514</td>
<td>7 months</td>
</tr>
<tr>
<td>EA. Development</td>
<td>Standard B1.m</td>
<td>2</td>
<td>Windows</td>
<td>1 Year</td>
<td>USA West (Oregon)</td>
<td>15,927</td>
<td>15,927</td>
<td>7 months</td>
</tr>
<tr>
<td>EA. Development</td>
<td>Standard B2.s</td>
<td>1</td>
<td>Linux</td>
<td>1 Year</td>
<td>Europe West 2</td>
<td>6,889</td>
<td>6,889</td>
<td>7 months</td>
</tr>
<tr>
<td>EA. Development</td>
<td>Standard B3.s</td>
<td>1</td>
<td>Windows</td>
<td>1 Year</td>
<td>East Asia (Singapore)</td>
<td>4,990</td>
<td>4,990</td>
<td>7 months</td>
</tr>
</tbody>
</table>
```

- Viewing the Azure Show all list

```
Reserved Instances

AWS  AZURE
Total 47  Count: 47  Up-Front Cost $76,082  Lifetime Net Savings $33,189

<table>
<thead>
<tr>
<th>SUBSCRIPTION</th>
<th>PRODUCT NAME</th>
<th>QUANTITY</th>
<th>PLATFORM</th>
<th>TERM</th>
<th>LOCATION</th>
<th>UP-FRONT CSTE</th>
<th>NET SAVINGS</th>
<th>REMAINING TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA. Development</td>
<td>Standard B1.s</td>
<td>2</td>
<td>Linux</td>
<td>1 Year</td>
<td>USA West (Oregon)</td>
<td>8,514</td>
<td>8,514</td>
<td>7 months</td>
</tr>
<tr>
<td>EA. Development</td>
<td>Standard B1.m</td>
<td>2</td>
<td>Windows</td>
<td>1 Year</td>
<td>USA West (Oregon)</td>
<td>15,927</td>
<td>15,927</td>
<td>7 months</td>
</tr>
<tr>
<td>EA. Development</td>
<td>Standard B2.s</td>
<td>1</td>
<td>Linux</td>
<td>1 Year</td>
<td>Europe West 2</td>
<td>6,889</td>
<td>6,889</td>
<td>7 months</td>
</tr>
<tr>
<td>EA. Development</td>
<td>Standard B3.s</td>
<td>1</td>
<td>Windows</td>
<td>1 Year</td>
<td>East Asia (Singapore)</td>
<td>4,990</td>
<td>4,990</td>
<td>7 months</td>
</tr>
</tbody>
</table>
```
RI Coverage Charts

RI Coverage charts compare the capacity of your current VM workload to the capacity of workload that is covered by Reserved Instances.

To see specific values, hover on a data point in the chart. Data points on the vertical line show the current moment (the last data point that was polled from your environment). To the left of the vertical line, data points show historical data and data points to the right are projections into the future.

The tooltip appears with:

- A date for the data point
- The percentage of RI coverage
- NFU (for AWS): The number of RIs calculated as NFUs that cover workload capacity compared to the total number of NFUs for the workloads in the chart’s scope. Each workload is assigned normalized factor units depending on its instance type. For more information about NFUs, see Resource Descriptions (on page 24).
- Ratio (for Azure): The number of RI units that cover workload capacity compared to the total number of RI units for the workloads in the chart’s scope. Each workload is assigned RI units based on its instance type.

If you have a high percentage of on-demand workload, then you should be able to reduce your monthly costs by increasing RI coverage. To increase coverage, you resize workloads to instance types that have existing RI capacity. If you need more RI capacity, then Turbonomic will recommend the RI templates that you should buy.

Note that if you set the scope to a specific AWS account, this chart shows the RI coverage for the workloads for the account, plus any RIs for the billing family. For Azure, if you set the scope to a specific Azure subscription, this chart shows the RI coverage for the workloads for the subscription, plus any shared RIs and single-scope RIs owned by this subscription.

Display

The chart shows the information as a Line chart.

Example: An RI Coverage chart for AWS and Azure

In this example, the cursor hovers on the current data point. The RI coverage is 24.7% for AWS and 4.19% for Azure. For AWS, 35.75 NFUs represent the RI-covered workloads out of the total 144.75 NFUs. The Azure ratio shows 7 RIs out of the total 167.
RI Utilization Chart

This chart shows how well you have utilized the Reserved Instance inventory. The chart compares the capacity for all Reserved Instances versus the RI consumption by virtual machines. The points that extend to the right of the vertical bar project utilization into the future.

The desired goal is to use more or all of your purchased Reserved Instances which is indicated by the area to the right of the vertical bar.

To see specific values, hover on a data point in the chart. The tooltip appears with:

- A date for the data point
- The percentage of RI utilization
- NFU (for AWS): The number of RIs calculated as NFUs that are consumed by virtual machines compared to the total number of RIs in the chart's scope. For more information about NFUs, see Resource Descriptions (on page 24).
- Ratio (for Azure): The number of RI units in use compared to the total number of RI units in the chart's scope. Each workload is assigned RIs based on its instance type.
- Effective cost: The total cost of utilized RIs per hour compared to the total number of all RIs in the chart's scope.

Note that if you set the scope to a specific AWS account or Azure subscription, this chart shows the RI utilization for the workloads for the entire billing family or for single and shared subscriptions.

Display

The chart shows the information as a Line chart.

Example: An RI Utilization chart for AWS and Azure

In this example, the cursor hovers on a future data point. The RI utilization is projected as 82.4% for AWS and 87.6% for Azure. For AWS, 99.5 NFUs represent RIs utilized by virtual machines out of the total 120.75 NFUs. The Azure ratio shows 106 RIs out of the total 121. For the projected effective cost, the utilized RIs will cost $2.37 per hour for AWS and $3.09 per hour for Azure.

Cloud Estimated Cost Charts

Cloud Estimated Cost charts show estimated monthly costs and investments for the cloud. Monthly cost amounts are summarized as amounts with and without actions.
Display
The chart shows the information as a Text chart.

Storage Summary Charts
To help you manage your costs on the public cloud, these charts show the distribution of storage for the given scope, cost, potential savings, and information about unattached storage. In this way, you can see how storage utilization affects your costs. For these charts, Turbonomic calculates the costs based on the cost information from the cloud targets.

For a detailed breakdown, click **Show all** at the bottom of the chart. If your scope includes both AWS and Azure cloud targets, click **AWS** or **Azure** to see the details. Click any column heading to sort the list. When you choose one or more checkboxes, the total appears at the top.

Chart Unit
Choose one of the following:
- **Count** to see how many storage tiers or volumes exist by storage type.
- **Cost** to see the monthly cost by storage type.

Chart Displays
Examples:
- **Costs**
 The chart shows the monthly costs for all storage tiers or volumes. You can also choose **Count** to list how many storage tiers or volumes exist by storage type. This display is available for real-time views and dashboards.
- **Unattached Storage**
 The chart shows how many unattached storage tiers or volumes exist. You can also choose **Cost** to list the monthly costs of the unattached storage. This chart is available for real-time views and dashboards.

Monthly Savings or Investments Totals Charts
Monthly Savings or Investments Totals charts help you examine the monthly savings or investments for executed cloud actions. For example, if an executed action causes an increase in the price, this is an investment. These charts also show the missed monthly savings or missed performance investments that you could have achieved for recommended cloud actions, if you executed them.

For this chart’s scope, you can choose an account or subscription, a group of accounts or subscriptions, or use the default, Global Environment. If you use the default Global Environment, the chart will automatically use all cloud accounts for its scope. Other examples of scope settings are: An AWS billing family, an Azure subscription, the All AWS Accounts predefined group, or the All Azure Accounts predefined group.

For all actions except Suspend, savings and investments are estimated based on the hourly cost of workload price differences and 730 hours per month of workload usage. Savings from Suspend actions are estimated based on the hourly cost of workload price differences and actual suspend times as defined in the suspension policy.

Missed savings and investments are estimated based on the hourly cost of workload price differences and the number of hours that recommended actions exist in the system.
Monthly Savings or Investments Totals charts calculate data on a monthly basis since your update of Turbonomic to version 6.4.2. Historical data stored in the database prior to version 6.4.2 is not included.

Chart Type

You can set the display to:

- Stacked Bar Chart
- Tabular

Examples:

- **Stacked Bar**

 This chart shows the monthly totals of savings or investments for each of the last seven days. It also shows the missed monthly savings or performance investments that you could achieve by executing recommended cloud actions.

- **Tabular**

 This chart shows the monthly totals of savings or investments for each of the last seven days. It also shows the missed monthly savings or performance investments that you could achieve by executing recommended cloud actions.

In the chart legend, you can also choose an item to change the display of the chart. Click the item again to reset the chart. For example, if you want to examine investment information, click **Investments** in the legend.

- **Tabular**

 This chart shows the monthly totals of savings or investments for each of the last seven days. It also shows the missed monthly savings or performance investments that you could achieve by executing recommended cloud actions.
On-Prem Chart Types

These chart widgets provide information on the status of your on-prem environment.

Density Charts

Density charts show the number of resource consumers (virtual machines or containers) per provider (host or storage). If available, choose the Show Density checkbox to see the ratio of consumers to providers.

These charts also show the desired count of virtual machines, assuming you want to fill the headroom completely. Note that the Desired Workloads values are the results of running plans. These plans can calculate workload moves within a cluster to gain more efficiency, but they always respect the cluster boundaries – the plans never move VMs to hosts on different clusters.

Chart Type

You can set the display to:

- Stacked Bar Chart
- Line Chart

Ports Charts

Ports charts show the most utilized northbound or southbound ports in your on-prem environment over a given time period. These charts are useful in Fabric environments where you license port channels.

Display

The chart shows the information as Tabular.

Headroom Charts

Headroom charts show how much extra capacity your clusters have to host workloads.

To calculate cluster capacity and headroom, Turbonomic runs nightly plans that take into account the conditions in your current environment. The plans use the Economic Scheduling Engine to identify the optimal workload distribution for your clusters. This can include moving your current VMs to other hosts within the given cluster, if such moves would result in a more desirable workload distribution. The result of the plan is a calculation of how many more VMs the cluster can support.

To calculate VM headroom, the plan simulates adding VMs to your cluster. The plan assumes a certain capacity for these VMs, based on a specific VM template. For this reason, the count of VMs given for the headroom is an approximation based on that VM template.

You can specify the following types of Headroom charts:

- CPU Headroom
- Memory Headroom
• Storage Headroom

Commodity

You can choose:

• CPU Headroom
• Memory Headroom
• Storage Headroom

Display

The chart shows the information as an Area chart.

Example:

![CPU Headroom](image)

Exhaustion Time Chart

This chart shows the current growth of workloads and projects when workloads will exceed the capacity of your current infrastructure. This is useful for future planning (for example, if you might need to buy more hardware).

You can track CPU, memory, and storage as well as the average monthly Virtual Machine growth and the average VM template. The amount of time is presented as days. For example, storage will be used up in 41 days.

Display

The chart shows the information as a Text chart.
Configuring Targets

A target is a service that performs management in your virtual environment. Turbonomic uses targets to monitor workload and to execute actions in your environment. When you configure a target, you specify the address of the service, and the credentials to connect as a client to it.

For each target, Turbonomic communicates with the service via the management protocol that it exposes — The REST API, SMI-S, XML, or some other management transport. Turbonomic uses this communication to discover the managed entities, monitor resource utilization, and execute actions.

To configure a target, you will choose the target type, specify the target’s address, and then provide credentials to access the target.

After you configure a target and add it to your installation, Turbonomic validates the connection, and then discovers the entities that target manages.

NOTE:
Turbonomic regularly checks that your targets are valid. If it discovers that a target is invalid it then posts that status to the user interface. Under some circumstances, the target can become valid again, but the status does not update. If you see an Invalid message for a given target, try to manually validate the target again (click VALIDATE).

Configuring a Target
1. Navigate to the Settings Page.

 [Settings Icon]

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. Choose Target Configuration.

 [Target Configuration Icon]

 Click to navigate to the Target Configuration Page.
This page lists all the targets that you currently have configured for Turbonomic. You can inspect these targets, you can edit them (change address and credentials), and you can add a new target to Turbonomic.

3. Filter the list of targets.

To work with a long list of targets, you can filter by the target type. You can also type a string in the Search field to filter the list, and you can sort the list by target status or target name.

4. Select one or more targets to work with.
When you select a target you can:

- **Rediscover** — Direct Turbonomic to fully discover the entities that this target manages. This will rebuild the topology that is associated with this target.
- **Validate** — Direct Turbonomic to validate its connection with the target. For example, if you create a new user account on the target, you can edit the target connection to use that account, and then revalidate.
- **Delete** — When you delete a target, Turbonomic removes all the associated entities from its model of the inventory.

5. Expand an entry to see details, or click the entry to edit the target's configuration.

For example, if you entered the wrong username or password, you can change those credentials and validate the target again.

6. Create a new target and add it to Turbonomic.
First, select the type of target to add. Then for the type you choose, select the specific target technology. For example, select Hypervisor/vCenter to add a VMware vCenter Server target. Then provide the address and credentials for that target.

For more details, including a list of supported targets and configuration requirements, see the *Turbonomic Target Configuration Guide*.
AWS Billing Families

As you configure AWS targets, Turbonomic discovers AWS accounts that are consolidated into billing families. A billing family has one master account, and zero or more member accounts. By recognizing billing families, Turbonomic more accurately calculates cloud investments and savings, and makes more accurate recommendations for RI coverage.

In the Targets user interface, master accounts appear in bold, with a star next to them. You can expand the account entry to see the related member accounts. If you expand the entry for a member account, then the related accounts includes the family master, indicated by a star.

For RI purchases, different accounts in a billing family can share the same RI resources. At the same time, accounts in other billing families cannot use those RIs. This adds flexibility to your RI coverage, while maintaining order over the billing.

In Turbonomic, if you enable Billing Family Recognition, then you can see the billing family master and member accounts in the Targets user interface, and Turbonomic can recommend proper RI purchases within the correct billing families.

To enable Billing Family Recognition, ensure the following as you configure your AWS targets:

- Use the proper role for each AWS target.

To properly discover billing family information for a target, you must give Turbonomic credentials for an AWS role that includes the permission, organizations:DescribeOrganization. With that permission, Turbonomic can:
 - Discover master accounts and member accounts in different billing families
 - Display the account names in the user interface
 - Discover billing information for each family and account
 - Recommend RI actions that respect billing family boundaries
• Configure targets for the complete billing family

One billing family can consolidate a number of AWS accounts. For Turbonomic to include these accounts in its analysis, you must configure each one as a separate target. If you do not configure all the accounts in a billing family, then Turbonomic cannot discover complete billing information for that family, and its analysis will be based on incomplete information.

Turbonomic displays member accounts that have been configured as targets in regular text. For members that Turbonomic discovers but have not been configured as targets, Turbonomic displays their names in grayed text.

If you have enabled Billing Family Recognition, you should keep the following points in mind:

• Billing families can grow

Turbonomic regularly checks the membership of your billing families. If it discovers a new member account, it adds that account to the list of members. If you have already configured the account as a target, then Turbonomic includes the new member in its analysis of billing families. If the new member is not already a target, then Turbonomic lists the new member in grayed text.

• You can configure discounts per billing family

Turbonomic includes a feature to set a discount for a billing group, and to override that discount for specific template families within that scope. For more information, see Cloud Discounts (on page 286) and Discount Override: AWS (on page 292).

• You might see master accounts that have no member accounts

AWS treats every account you create as a part of a billing family. Assume you created an account, but you had no reason to consolidate its billing with any other accounts. In that case, the account appears in the Turbonomic user interface as a master account, but it has no member accounts.
Configuring Targets

You can configure Turbonomic to manage Azure subscriptions within the context of an Enterprise Agreement (EA). An EA defines specific pricing, including the pricing for Reserved Instances (RIs). When you configure an EA target, and set the EA key to your Azure targets, Turbonomic uses that richer pricing information to calculate workload placement and RI coverage for your Azure environment.

To enable Turbonomic management of Azure EA environments, you must configure:

- One Microsoft Enterprise Agreement target
- At least one Service Principal target that can discover the underlying Azure subscriptions

For information about Azure targets, see "Microsoft Azure" in the Target Configuration Guide.

In the Targets View, you can identify the targets related to Azure EA as follows:

- **EA Targets**
 The target that discovers the EA to track pricing and RI information. You can have one EA target per Turbonomic deployment. The EA target appears with a star next to the validation date. Expand the entry to see the EA enrollment number, and the Azure subscriptions that participate in the EA.

- **Azure Subscription Targets**
 The targets that manage the workloads in your Azure environment. These are discovered by Service Principal targets. Note that not all subscription targets necessarily participate in the EA. Expand these entries to see the related Service Principal target. For members of the EA, you can see the related EA target as well.

 Subscriptions that do not participate in the EA appear as Standalone targets.

Azure Enterprise Agreements

You can configure Turbonomic to manage Azure subscriptions within the context of an Enterprise Agreement (EA). An EA defines specific pricing, including the pricing for Reserved Instances (RIs). When you configure an EA target, and set the EA key to your Azure targets, Turbonomic uses that richer pricing information to calculate workload placement and RI coverage for your Azure environment.

To enable Turbonomic management of Azure EA environments, you must configure:

- One Microsoft Enterprise Agreement target
- At least one Service Principal target that can discover the underlying Azure subscriptions

For information about Azure targets, see "Microsoft Azure" in the Target Configuration Guide.

In the Targets View, you can identify the targets related to Azure EA as follows:

- **EA Targets**
 The target that discovers the EA to track pricing and RI information. You can have one EA target per Turbonomic deployment. The EA target appears with a star next to the validation date. Expand the entry to see the EA enrollment number, and the Azure subscriptions that participate in the EA.

- **Azure Subscription Targets**
 The targets that manage the workloads in your Azure environment. These are discovered by Service Principal targets. Note that not all subscription targets necessarily participate in the EA. Expand these entries to see the related Service Principal target. For members of the EA, you can see the related EA target as well.

 Subscriptions that do not participate in the EA appear as Standalone targets.
NOTE:
In rare circumstances, you can have a subscription that is not in use – The subscription has no workloads associated with it. In this case, Turbonomic identifies the subscription as Standalone. This is because the target cannot discover any cost or usage information that would relate the subscription to its EA.

- Service Principal Targets

The Azure target that you configure to discover Azure subscription targets. Expand the entry to see the discovered targets. If you have configured an EA target, the entry lists that as well, along with the EA enrollment number.

Reserved Instances and Azure EA

For Azure environments, Turbonomic can only discover and use RIs if you have configured a Microsoft Enterprise Account target, and if one or more subscriptions participate in that EA.

To discover and manage RIs in Azure environments, Turbonomic uses both the EA target and the associated subscription targets. On its own, a subscription target exposes costs for pay-as-you-go pricing. The EA target discovers pricing for the available RI instance types. Turbonomic combines this information to track:

- RI utilization
- RI coverage
- Virtual machine costs (accounting for RIs)

NOTE:
This release of Turbonomic does not support RI discovery and management for Classic VMs and Classic Cloud Services. Also, it does not support RI discovery and management for Suppressed Core virtual machines.

Cost Calculations for Azure Environments

To understand the reported costs in your Azure environment, consider these points:

- For targets that participate in the EA, Turbonomic uses the terms of the given EA, and bases costs on the Offer ID that is effective for the given subscription.
- For VMs in Azure, RI pricing does not include the cost of the OS license. However pricing for on-demand VMs does include the license cost.

NOTE:
For Microsoft Azure EA environments, the projected cost for RI Purchase actions might not match associated costs you find in the Microsoft Pricing Calculator.

Turbonomic actions can recommend RI purchases. For these recommendations, the action assumes a free Linux OS, so the cost estimate does not include the OS cost. However, The Microsoft Pricing Calculator does include costs for OS licenses. As a result, when you compare the Turbonomic cost estimates to the values in the Pricing Calculator, it's likely that the two estimates will not match. This difference also affects the Break Even Point that appears in the Recommended RI Purchases chart. Because the recommended purchases do not include Azure costs for OS licenses, the listed Break Even Point can be optimistic.

- For workloads you migrated from on-prem to the Azure cloud, Turbonomic recognizes Azure Hybrid Benefit (AHUB) savings for RIs and on-demand workloads. The costs you see in Turbonomic charts include this benefit. However, remember that recommended actions do not include any license cost, so the actions will not reflect any proposed AHUB savings (see above).
- Turbonomic supports rate cards for workloads that use the pricing set by a Cloud Solution Provider. Note that rate cards only apply to on-demand workloads, and they do not include RI pricing data. For more information, see "Azure Rate Cards" in the User Guide.
Creating Groups

Groups assemble collections of resources for Turbonomic to monitor and manage. When setting scope for your Turbonomic session, you can select groups to focus on those specific resources. For example, if you have a number of VMs devoted to a single customer, you can create a group of just those VMs. When running a planning scenario you can set the scope to work with just that group.

Turbonomic discovers groups that exist in your environment. These groups include PM clusters, and entities grouped by different logical boundaries. For example, Turbonomic discovers Storage by Disk Array, Physical Machines by Datacenter, and VMs by Network. In addition, Turbonomic discovers pools such as virtual datacenters, or folders that implement specific HA policies.

You can also create custom groups. Turbonomic supports two custom-grouping methods:

- **Dynamic** — You define these groups by specific criteria. You can group services according to naming conventions (all VM names that start with *ny*), resource characteristics (all physical machines with four CPUs), or other criteria such as time zone or number of CPUs.

 These groups are dynamic because Turbonomic updates the group as conditions change.

- **Static** — You create these groups by selecting the specific group members.

1. **Navigate to the Settings Page.**

 ![Settings Icon]

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. **Choose Groups.**

 ![Groups Icon]

 Click to navigate to the Group Management Page.
This page lists all the custom groups that you currently have configured for Turbonomic. You can:

- Expand an entry to see group details
- Select an entry to delete the group
- Click a group name to edit it

For a dynamic group, you can edit the set of criteria that select the group members. For a static group, you can add or subtract specific members.

- Create new groups

To work with a long list of groups, you can filter by group type. For example, only show groups of VMs, or groups of host machines. You can also type a string in the Search field to filter the list.

3. Expand an entry to see group details.

The details show you information about related entities such as how many hosts provide resources for a group of VMs. If there are any pending actions for the group, the details list those actions as well.

4. Create a new group.

Click NEW GROUP.
Creating Groups

Next, choose a group type.
Then, specify the group settings:

- Give the group a name.
- Set whether the group will be static or dynamic.

To create a static group, select the member entities from the list. To filter the list, set group criteria.

To create a dynamic group, set group criteria. The list updates to show the resulting group members.

- Specify group criteria.

These criteria are entity attributes that determine group membership. You might create a group of all VMs that have 4 VCPUs. You can choose properties of the member entities, and you can choose properties of entities that are related to the members. For example, you can make a group of VMs that are hosted by PMs with the substring "Development" in their names.

As you set criteria, the list of entities updates to show the member entities. You also can sort the list by severity (per the most critical entity in group) or group name.

Note that you can use regular expression to express your match strings.

- When you are finished, save the group.

Save adds this group to the My Groups collection.
Working With Schedules

Turbonomic schedules specify a specific time range during which certain events can occur. Turbonomic currently uses schedules in scoped policies to set up windows of time when the policy can execute certain actions, or when the policy changes settings that affect analysis and action generation.

NOTE:
When you configure a schedule window for a resize action, to ensure Turbonomic will execute the action during the scheduled time, you must turn off the Enforce Non Disruptive Mode setting for that scheduled policy. Even if you turn the setting off for the global policy, you still must turn the setting off for your scheduled policy. Otherwise Turbonomic will not execute the resize action.
The Schedules page lists all the currently defined schedules. From this page you can:

- Select an entry to delete the schedule.
- Select an entry to defer the next occurrence.

Turbonomic calculates when the next scheduled window will open. If you want cancel the scheduled occurrence one time, you can select the schedule and defer the upcoming occurrence. This defers the schedule wherever it is applied. If the schedule is applied to more than one policy, this will defer all the policies that use this schedule. Before you defer a schedule, you should expand the details and review all the policies that use this schedule.

- Expand an entry to see schedule details

The details include a summary of the schedule definition, as well as:

- **USED IN POLICIES**
 The number of policies that use this schedule. Click the number to review the policies.

- **NEXT OCCURRENCE**
 When the schedule will next come into effect.

- **ACCEPTED ACTIONS**
 How many scheduled actions have been accepted to be executed in the next schedule occurrence. Click the number for a list of these actions.

- **AWAITING ACCEPTANCE**
 The number of Manual actions affected by this schedule that are in the Pending Actions list, and have not been accepted. Click the number for a list of these actions.

- Create new schedules
See Creating Schedules (on page 211).

Deleting Schedules

Before you delete a schedule, you should view its details to make sure no policies use it. If you delete a schedule that is in use by any policies, Turbonomic disables the affected policies until you edit them to either:

- Apply a different schedule to the policy and save the change, or...
- Save the policy with no schedule

Saving with no schedule confirms that you intend for this policy to apply at all times. Because scheduled policies are for special cases, this is usually not what you intend. For example, a scheduled maintenance window can have aggressive action modes that you do not want to enable during peak hours. If you save the policy with no schedule, then the aggressive settings will take effect at all times.

Turbonomic posts a confirmation dialog before deleting a schedule that is currently in use.

Creating Schedules

To create a new schedule:

1. Navigate to the Settings Page.

 ![Settings](image)

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. Choose Schedules.

 ![Schedule](image)

 Click to navigate to the Schedule Management Page.

 This page lists all the schedules that you currently have configured for Turbonomic. You can edit the schedules in the list, or you can create new schedules.
3. Create a new schedule.

Click **New Schedule** to open the new schedule fly-out. Then name the schedule.

4. Set the recurrence for the schedule.

Choose whether the scheduled period occurs just once, or whether it repeats over time. The settings vary according to the recurrence you choose:

- **Does Not Recur**

 This is a one-time schedule window. A non-recurring window has a start date, and no end date. The window starts on the day and time you specify, and remains open for the given duration.

- **Daily**

 Repeat this schedule every given number of days. For example, repeating 30 days is similar to repeating monthly, except it repeats by the count of days, not by the calendar month.

 The schedule begins on the **Start Date**, and continues repeating until the **End Date**. If **End Date** is "None", the schedule repeats perpetually.
Working With Schedules

• Weekly

Repeat this schedule every given number of weeks, on the week days you specify. For example, to repeat every weekend, set it to repeat every one week on Saturday and Sunday.

The schedule begins on the **Start Date**, and continues repeating until the **End Date**. If **End Date** is "None", the schedule repeats perpetually.

• Monthly

Repeat this schedule every given number of months, to begin on a given day in the month. For example, you can schedule a maintenance window to begin on the first Saturday of each month.

The schedule begins on the **Start Date**, and continues repeating until the **End Date**. If **End Date** is "None", the schedule repeats perpetually.

5. Set the Start Time and Duration.

These settings specify how long the scheduled window remains open. You set the duration in terms of hours and minutes. Using a duration instead of an end time removes ambiguities such as starting before midnight and ending after. However, you should make sure the duration is not longer than the recurrence.

6. Set the time zone.

This gives a reference for the schedule's start time. The Turbonomic server uses that reference when it opens and closes the schedule window. Users see the same time zone setting no matter where they are located – They should convert the schedule time to their local time if they want to track when the schedule opens in their working day.

7. When the settings are complete, save the schedule.
Working With Policies

Policies set business rules to control how Turbonomic analyzes resource allocation, how it displays resource status, and how it recommends or executes actions. Turbonomic includes two fundamental types of policies:

- **Placement Policies**

 To modify workload placement decisions, Turbonomic divides its market into segments that constrain the valid placement of workloads. Turbonomic discovers placement rules that are defined by the targets in your environment, and you can create your own segments.

- **Automation Policies**

 Turbonomic ships with default settings that we believe will give you the best results from our analysis and control. These settings are specified in a set of default Automation Policies for each type of entity in your environment. But for some scopes of your environment, you might want to change these settings. For example, you might want to change action automation for that scope, or change the utilization constraints. You can create Action Policies that override the defaults for the scopes you specify.

The Policy Management page shows all the currently defined policies. From this page you can:

- Select an entry to delete the policy
- Click an entry name to edit the policy

You can enable or disable discovered placement policies. For a Turbonomic segment (a placement policy that was created in Turbonomic), you can edit the policy definition as well as enable/disable it.

- Create new policies
Working With Policies

To see the policies that are applied to a scope, go to the Search page and set the Turbonomic session to that scope. Then show the Policy view. For more information, see Scope Policies (on page 89).

Things You Can Do

- Manage Imported Placement Policies – Importing Workload Placement Policies (on page 216)
- Create a Placement Policy – Creating Placement Policies (on page 216)
- Create a Scoped Automation Policy – Creating Scoped Automation Policies (on page 223)

Placement Policies

For planning and optimization, Turbonomic recommends actions to place workloads such as applications, or VMs on their providers (hosts, datastores, disk arrays, networks, etc.). Turbonomic can recommend these actions, or execute them automatically.

When calculating workload placement, Turbonomic respects cluster boundaries, networks, and provisioned data stores. In addition, the configuration of your environment can specify logical boundaries, and within Turbonomic you can create even more boundaries. These boundaries impose segments on the market that Turbonomic uses to model your application infrastructure.

In finance, a market segment divides the market according to the criteria different groups of people use when they buy or sell goods and services. Likewise in the Turbonomic market, a workload placement segment uses criteria to focus
the buying and selling of resources within specific groups of entities. This gives you finer control over how Turbonomic calculates moves. When managing segments you can:

- Review the placement policies that Turbonomic has discovered. These are policies that have been defined in your environment, outside of Turbonomic. See Importing Workload Placement Policies (on page 216).
- Create placement segments that restrict workload placement according to specific rules. See Creating Placement Policies (on page 216).

NOTE:
You can enable or disable any imported policy or created workload placement segment to affect placement calculations in the real-time environment or in plans.

Importing Workload Placement Policies

The hypervisors that you set as targets can include placement policies of their own. Turbonomic imports these placement policies, and you can choose to enable or disable them as you wish. By default, Turbonomic enables imported placement policies.

Turbonomic imports:

- vCenter Server DRS Rules
 See "Other Information Imported from vCenter" in the Target Configuration Guide
- Virtual Machine Manager Availability Sets
 See "Virtual Machine Manager" in the Target Configuration Guide

NOTE:
In vCenter environments, Turbonomic does not import DRS rules if DRS is disabled on the hypervisor. Further, if Turbonomic did import an enabled DRS rule, and somebody subsequently disables that DRS rule, then Turbonomic will discover that the rule was disabled and will remove the imported placement policy.

Creating Placement Policies

Placement Policies set up constraints to affect how Turbonomic calculates the placement of workloads in your environment. In this way, you can direct Turbonomic to recommend actions that satisfy business rules for your enterprise.

Turbonomic discovers Placement policies that have been defined in your environment, and you can also create Placement policies through the Turbonomic user interface. Note that you can enable or disable any Placement policy, both for real-time analysis and for planning scenarios.

Turbonomic supports the following placement policies:

- **Place** — Determine which entities use specific providers
 For example, the VMs in a consumer group can only run on a PM that is in the provider group. You can limit the number of consumers that can run on a single provider — for PMs in the provider group, only 2 instances of VMs in the consumer group can run on the same host. Or no more than the specified number of VMs can use the same storage device.
- **Don't Place** — Consumers must never run on specific providers
For example, the VMs in a consumer group can never run on a PM that is in the provider group. You can use such a segment to reserve specialized hardware for certain workloads.

- **Merge** — Merge clusters into a single provider group

 For example, you can merge three PM clusters in a single provider group. This enables Turbonomic to move workload from a host in one of the clusters to a host in any of the merged clusters.

- **License** — Set up hosts with paid licenses to be the preferred providers for VMs or applications that require those licenses

 If you purchase licenses for hosts to run specific software, you want to place as many licensed VMs or applications on a licensed host as possible. A license segment identifies a group of host machines that provide a given license, and a group of VMs or applications that consume that license. When Turbonomic calculates workload placement, it will avoid moving the VMs to hosts that don’t provide the license, and will try to consolidate workload on as few licensed hosts as possible.

1. Navigate to the Settings Page.

 ![Settings](image)

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. Choose Policies.

 ![Policies](image)

 Click to navigate to the Policy Management Page.

 This page lists all the policies that you currently have configured for Turbonomic.

3. Create a new Placement policy.
First, select the type of Placement policy to create, then specify the settings:

- Give the policy a name
- Choose the policy type and make the settings
- Save the policy when you're done

4. Create a **Place** policy.

These policies control where workload can be placed. For example, you can specify that a VM will only be placed on a PM that is a member of a specific cluster. Or you could specify that any applications in a specific group can only be placed on a datastore that is a member of a specific group.

- **Specify the consumer group** — The group or cluster of entities that will be placed on the identified providers
- **Specify the provider group** — The group or cluster of entities that will provide resources to the consumers
- **Limit workload entities to placement group** — Set the policy to only place consumer entities on members of the provider group
- **Limit the maximum number of workload entities per placement entity to** — Limit how many instances of the consumer entities can be placed on a single provider

5. Create a **Don't Place** policy.

These policies identify groups or clusters that will never host the consumer entities. For example, you can specify that a VM will never be placed on a PM that is a member of a specific cluster. Or you can specify that a set of
non-critical applications will never be placed on specialized hardware, as a way to ensure availability for critical applications.

- **Specify the consumer group** — The group or cluster of entities that will be excluded from the identified providers
- **Specify the provider group** — The group or cluster of entities that will not provide resources to the consumers

6. Create a Merge policy.

To remove cluster boundaries you can create Merge policies. These policies merge multiple clusters into a single logical group for the purpose of workload placement. For example, your environment might divide hosts into clusters according to hardware vendor, or by some other criteria. Workload placement typically does not cross such cluster boundaries. However, there might be no technical reason to apply these boundaries to workload placement. By creating a larger pool of provider resources, Turbonomic has even more opportunities to increase efficiency in your environment.

For merge policies, keep the following considerations in mind:

- For most policies that merge host and storage clusters, the clusters you place in the Merge segment must be members of the same datacenter.
- For vCenter environments, use Merge policies to support cross-vCenter moves. In this case, where a datacenter corresponds to a given vCenter target, the merged clusters can be in different datacenters. In this case you must create two merge policies; one to merge the affected datacenters, and another to merge the specific clusters.

 Also note that the clusters you merge must use the same network names on their respective datacenters.

- For cloud environments, you can create policies to merge datacenters. Use these merge policies to support VM moves that find better costs on other zones.

To create a Merge policy, choose the type of entity to merge, and then select the groups you will merge.

7. Create a License policy.
These policies keep VMs and applications that use a specific license running on the hosts that provide that specific license. For example, assume you have purchased a number of licenses for a database — You pay for the right to run that database on a certain number of host sockets. In that case, it’s most advantageous to do two things:

• Only place the associated workload on hosts that have the license assigned to them
• Consolidate workload on those hosts as much as possible, in case you can suspend a host and save on licensing cost

In the Turbonomic market, consumers purchase resources from providers. In a license policy, the consumers get a reduced price for resources from the hosts in the Provider Group. The result is that the workload will have strong tendency to be placed on these hosts. This helps to meet the goal of consolidating the workload on the licensed hosts. However, if the licensed hosts don’t have enough capacity, then the workload can be placed on other hosts. In that case, Turbonomic will also recommend provisioning a new licensed host.

To create a License policy:

• Specify the consumer group — The group or cluster of entities that get priority to run on the providers
• Specify the provider group — The group or cluster of hosts that are to give priority to the identified consumers

When you have made all your settings, be sure to save the Policy.

Automation Policies

As Turbonomic gathers metrics, it compares the metric values against specified constraint and capacity settings to determine whether a metric exhibits a problem, and what actions to recommend or execute to avoid a problem. Turbonomic uses Automation Policies to guide its analysis and resulting actions. These policies can specify:

• Action Automation
 Whether to execute automatically or manually, or whether to just recommend the action. For more information, see Action Automation (on page 232).

• Action Scripts
 Whether to have Turbonomic execute the action, or execute the action with Action Scripts. For more information, see Deploying Action Scripts (on page 245).

• Analysis Settings
 Settings that affect the Turbonomic analysis of the state of your environment. These include:
 ◦ Operational Constraints such as enabling/disabling discovery of HA policies set for Hosts or excluding specific instance types for a scope of workloads
 ◦ Utilization Constraints such as memory or CPU utilization
 ◦ Resize Increments
 ◦ Application Priority
 For more information, see Analysis Settings (on page 252).

Default and Scoped Automation Policies

Turbonomic ships with default Automation Policy setting for the different types of entities it can discover in your environment. The settings for these default policies should be adequate to meet your initial business requirements. These policies apply to the global scope — Unless you override them, they affect all the entities in your environment. For more information, see Working With Default Automation Policies (on page 221).
Turbonomic can include scoped Action Policies, which override the default settings for certain entities. With these policies you specify one or more groups of entities as the policy scope. You can also set a schedule to the policy to specify maintenance windows, or to support orchestration workflows that require approval before executing the given action. For more information, see Working With Scoped Automation Policies (on page 222) and Setting Policy Schedules (on page 230).

Working With Default Automation Policies

Turbonomic ships with default Automation Policy settings for the different types of entities it can discover in your environment. The settings for these default policies should be adequate to meet your initial business requirements. These policies apply to the global scope – Unless you override their settings, they affect all the entities in your environment.

Over time you might learn that you want to make global changes to certain policy settings. For example, Enforce Non Disruptive Mode is turned off by default. You might learn that in most cases you want to turn it on, and only turn it off for select scopes. In that case, you would turn it on in the default Automation Policy for VMs, and then set scoped policies for those groups of VMs for which you want to turn it off.

Relationships Between Default and Scoped Policies

Your default Automation Policies and scoped Automation Policies take effect in relation to each other. A default policy has a global effect, while a scoped policy overrides the default policy for the entities within the indicated scope. You should keep the following points in mind:

- **Scoped policies set overrides to specific settings**
 A scoped policy can override a subset of settings for the entity type, and for the remainder Turbonomic will use the default policy settings on the indicated scope.

- **Among scoped policies, the most conservative setting wins**
 It's possible to set up policies with conflicts on individual entities. Assume two groups, Group_A and Group_B. Now imagine that one entity is a member of both groups. What happens if you create two different Automation Policies, one for Group_A and another for Group_B? In that case, the entity that is in both groups can have different policy settings.

 For example, the Group_A policy could set the Suspend action to Manual, while the setting for Group_B is Recommend. Turbonomic always uses the most conservative setting. For this case, the Recommend setting is most conservative, so it wins.

- **Scoped policies always take precedence over default policies**
 Even if the default policy has a more conservative setting, the setting in the scoped policy wins for entities in that scope.

- **For a global effect, always use default policies**
 Because of the conservative setting wins rule for scoped policies, you should never use a scoped policy to set a global effect. For example, you can create a scoped policy for the All VMs group. If you then specify a conservative setting for that policy, no other scoped policy can specify a more aggressive setting – the conservative setting will always win.

 For this reason, you should always use default Automation Policies whenever you want to achieve a global effect.
Viewing and Editing Default Automation Policies

To view or edit your default policies:

1. Navigate to the Settings Page.

![Settings](image)

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. Choose Policies.

![Policies](image)

 Click to navigate to the Policy Management Page.

 This page lists all the policies that you currently have configured for Turbonomic.

![Policy Management](image)

 The page displays a list of all the default policies, by entity type.

4. Click the entity type whose default settings you wish to view or change.

 A fly-out appears with all the settings for that default policy. You can navigate to view different settings.

5. Optionally, edit settings for this default policy.

 Navigate to the settings you want to change, and enter a different value for each. You can modify settings for:
 - Action Automation ([on page 232](#))
 - Analysis Settings ([on page 252](#))

 When you're done, click Save and Apply.

Working With Scoped Automation Policies

To override the current default Automation Policies, you can create scoped policies. These specify settings you want to change for certain entities in your environment. For these policies, you assign the policy to one or more groups of entities. In addition, you can assign a schedule to a scoped policy to set up maintenance windows or other scheduled actions in your environment.
Reasons to create scoped Automation Policies include:

- **Change the Analysis Settings for Certain Entities**

 Turbonomic uses a number of settings to guide its analysis of the entities in your environment. The default settings might be fine in most cases, but you might want different analysis for some groups of entities. You can configure scoped policies to modify Operational Constraints or Scaling Constraints. For more information, see [Analysis Settings](on page 252).

- **Phase In Action Automation**

 Assume you want to automate scaling and placement actions for the VMs in your environment. It is common to take a cautious approach, and start by automating clusters that are not critical or in production. You can scope the policy to those clusters, and set the action mode to Automated for different actions on those VMs (see [Action Modes](on page 102)).

- **Set Up Action Scripts Entities**

 Scoped policies can use Action Scripts to integrate actions with other technologies, or to execute custom processes in relation to an action. For more information, see [Deploying Action Scripts](on page 245).

For the steps to create a scoped policy, see [Creating Scoped Automation Policies](on page 223). As you create the policy you will:

- Set the policy scope (see [Policy Scope](on page 229))

- Optionally create a schedule for the policy (see [Setting Policy Schedules](on page 230)).

- Make policy settings for:
 - [Action Automation](on page 232)
 - [Analysis Settings](on page 252)

Discovered Scoped Automation Policies

As Turbonomic discovers your environment, it can find configurations that set up scopes that need specific policies. For example:

- **HA Configurations**

 For vCenter Server environments, Turbonomic discovers HA cluster settings and translates them into CPU and memory utilization constraints. The discovery creates a group of type *folder* for each HA cluster, and creates a policy that sets the appropriate CPU and memory constraints to that policy.

Creating Scoped Automation Policies

To create a new scoped Automation Policy:

1. Navigate to the Settings Page.

 ![Settings Icon](image)

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.
2. **Choose Policies.**

Click to navigate to the Policy Management Page.

This page lists all the policies that you currently have configured for Turbonomic. You can edit the policies in the list, or you can create new scoped policies.

3. **Create a new scoped automation policy.**

Select the policy type. This sets the type of entity that your policy will affect. Note that Turbonomic supports different actions for different types of entities (See Default Action Modes and Automation Support (*on page 233*) for details). For example, you cannot add VMem to a storage device. Setting policy type is the first step you take to focus on which actions you want to map to your workflows.
4. **Name the policy.**

Once you have chosen the policy type, you can make all your policy settings. Start by giving the policy a useful name.

5. **Set the policy scope.**

Expand the **SCOPE** section and choose one or more groups to set as the policy’s scope. You can choose from groups of entities that match the type of entity you have set for the policy. You can also create new groups and add them to the policy scope.

NOTE:

In Turbonomic you can find nested groups (groups of groups). For example, the “By PM Cluster” group contains host clusters, and each host cluster is a group. Do not set the policy scope to a parent of nested groups. When setting up policies, be sure you set them to individual groups. If necessary, create a custom group for the settings you want to apply.
The scope determines which entities this policy will affect. Click **SCOPE** to expand the section, and then add one or more groups. When you click **ADD GROUPS**, Turbonomic displays a list of all the groups of entities that match the policy type. You can also create new groups if necessary.

NOTE:
A single entity can be a member of multiple groups. This can result in a conflict of settings, where the same entity can have different Action Policy settings. For conflicts among scoped policy settings, the most conservative setting will take effect. For more details, see Policy Scope (on page 229).

6. Optionally, set a schedule for the policy.

Expand the **SCHEDULE** section and add a schedule to the policy.
The Select Schedule fly-out lists all the schedules that are currently defined for your instance of Turbonomic. Expand a schedule entry to see its details. The details include a summary of the schedule definition, as well as:

- **USED IN POLICIES**
 The number of policies that use this schedule. Click the number to review the policies.

- **NEXT OCCURRENCE**
 When the schedule will next come into effect.

- **ACCEPTED ACTIONS**
 How many scheduled actions have been accepted to be executed in the next schedule occurrence. Click the number for a list of these actions.

- **AWAITING ACCEPTANCE**
 The number of Manual actions affected by this schedule that are in the Pending Actions list, and have not been accepted. Click the number for a list of these actions.

If none of the listed schedules is suitable for your policy, you can click **New Schedule** to create a new one. See Creating Schedules (on page 211).

For use cases and information about how schedules affect policies, see Setting Policy Schedules (on page 230).

NOTE:
When you configure a schedule window for a resize action, to ensure Turbonomic will execute the action during the scheduled time, you must turn off the Enforce Non Disruptive Mode setting for that scheduled policy. Even if you turn the setting off for the global policy, you still must turn the setting off for your scheduled policy. Otherwise Turbonomic will not execute the resize action.

7. Set action modes for the actions this policy affects.

Click **ACTION AUTOMATION** to expand the section, and then set up one or more actions. When you click **ADD ACTION**, Turbonomic displays a list of all the actions that are viable for the policy type. Choose an action and then set the action mode. You can set the mode for one or more actions.

The action modes you can set are:

- **Disabled** — Do not recommend or perform the action
 When you disable an action, Turbonomic never considers that action in its calculations. For example, if you disable Resize for all VMs in a group, then analysis will still drive toward the desired state, but will do so without considering resize actions for those VMs. Disabled actions do not show in the Pending Actions List.
• Recommend — Recommend the action so a user can execute it via the given hypervisor or by other means
• Manual — Recommend the action, and provide the option to execute that action through the Turbonomic user interface
• Automated — Execute the action automatically

8. Configure analysis settings that you want to make for this scope of entities.

Click to expand the type of analysis setting you want to make, and add a new setting.

The settings you can make are different according to the type of entity this policy will affect. For information about the settings you can make, see Analysis Settings (on page 252).

For example, assume you are making a Host policy. Expand UTILIZATION CONSTRAINTS and then click Add Utilization Constraint. After you click to add the item, you then choose from a list of available settings. Once you add the setting to the policy, you can then change its value. Each setting you add to the policy takes precedence over the default value for that setting.
When you have made all your settings, be sure to save the Automation Policy.

Policy Scope

You must declare a scope whenever you make a scoped Automation Policy. The scope determines which entities will be affected by the policy settings. To set scope, you assign one or more groups to the policy. You can use discovered groups, or you can create your own groups. For information about creating groups, see Creating Groups (on page 206).

Relationships Between Default and Scoped Policies

Your default Automation Policies and scoped Automation Policies take effect in relation to each other. A default policy has a global effect, while a scoped policy overrides the default policy for the entities within the indicated scope. You should keep the following points in mind:

- Scoped policies set overrides to specific settings
 A scoped policy can override a subset of settings for the entity type, and for the remainder Turbonomic will use the default policy settings on the indicated scope.

- Among scoped policies, the most conservative setting wins
 It's possible to set up policies with conflicts on individual entities. Assume two groups, Group_A and Group_B. Now imagine that one entity is a member of both groups. What happens if you create two different Automation Policies, one for Group_A and another for Group_B? In that case, the entity that is in both groups can have different policy settings.

 For example, the Group_A policy could set the Suspend action to Manual, while the setting for Group_B is Recommend. Turbonomic always uses the most conservative setting. For this case, the Recommend setting is most conservative, so it wins.

- Scoped policies always take precedence over default policies
Even if the default policy has a more conservative setting, the setting in the scoped policy wins for entities in that scope.

- For a global effect, *always* use default policies

Because of the *conservative setting wins* rule for scoped policies, you should never use a scoped policy to set a global effect. For example, you can create a scoped policy for the **All VMs** group. If you then specify a conservative setting for that policy, no other scoped policy can specify a more aggressive setting – the conservative setting will always win.

For this reason, you should always use default Automation Policies whenever you want to achieve a global effect.

Setting Policy Schedules

You can set a schedule for an automation policy, which sets a window of time when the policy takes effect. For example, you can set up a maintenance window when you are allowed to execute actions, or you can modify the analysis settings for a given period of time.

Remember that for scoped automation policies, it is possible that one entity can be in two different scopes – This means the entity can be under the effect of two different policies. For this reason, scoped policies keep the rule, *the most conservative setting wins*. However, a more aggressive scoped policy takes precedence over the corresponding default automation policy. For more details, see [*Policy Scope*](on page 229).

You must consider these rules when you add schedules to policies. Assume you have scheduled aggressive settings every weekend for a given scope, and during the week the settings are more conservative. If the more conservative settings are in a default automation policy, then the scheduled change takes effect. However, if the more conservative settings are in another scoped policy, then the conservative settings *win*, and the scheduled changes do not take effect.

You must also compare the effect of changing Analysis Settings to changing Action Modes in a scheduled policy. If you schedule changes to analysis, that means Turbonomic will generate actions in response to different conditions for the scheduled time. If you schedule changes to Action Modes, that means Turbonomic will *execute* the actions differently during the scheduled time.

Scheduling Changes to Turbonomic Analysis

Automation policies include analysis settings such as Operational Constraints or Scaling Constraints. These settings affect Turbonomic analysis, and the actions it generates. You can set up scheduled times when you want to change those settings.

For this case, you want Turbonomic to base its actions on different analysis. If your policy crosses with other scoped policies, then the most conservative setting wins whether it is scheduled or not.

Scheduling Action Execution

One use case for schedule policies is to set up a maintenance window, or some other period of time when you want Turbonomic to execute your actions. For example, say your enterprise only allows Storage Move actions during the weekend for certain VMs. Assume the default action mode is Recommend. Then you can:

- Create a scoped policy for those VMs
- Set the action mode for Storage Move to Automated
- Give the policy a schedule that starts on Saturday morning, and lasts 48 hours
For a maintenance window, you should create a scheduled policy for action modes, only. Do not include any Analysis Settings in the scheduled policy. You should also be sure that no other scoped policies will set more conservative action modes to any entities you want to affect in this maintenance window.

If you want to change analysis settings for this scope, create a separate policy for those changes. Do not set a schedule to that policy – This ensures that Turbonomic uses the same analysis to generate actions for this scope, at all times.

Execution of Scheduled Actions

When you schedule a change of mode for a given action, it is usually to limit execution to the scheduled window. You can set up different types of execution for scheduled actions:

- **Automated**
 When the schedule takes effect, Turbonomic executes any pending actions that it changes to the Automated mode. If Turbonomic posts the actions before the schedule takes effect, they appear in the Pending Actions list as normal. The action details show what schedule affects the given action, and shows the next occurrence of that schedule.

- **Manual**
 To schedule manual execution of actions, create both unscheduled Manual actions and also scheduled Manual actions.

To create unscheduled Manual actions, either edit the default automation policy or create a scoped policy that matches the scope of your scheduled policy. Then for the actions you want to affect, set them to the Manual action mode.

To create scheduled Manual actions, create a scheduled policy for the given scope. Then for the actions you want to affect, set them to the Manual action mode.

When Turbonomic recommends one of these actions, it appears in the Pending Actions list as a Manual action. The action details show the action state as `PENDING ACCEPT`, and you can see what schedule affects the action.

If you accept the action (select it and click **Apply Selected**), then Turbonomic adds it to the queue of actions to be executed the next time the schedule takes effect. The action details show the action state as `AWAITING EXECUTION`. You can see what schedule affects the action, and the next occurrence of that schedule.

Keeping Actions Valid Until the Scheduled Time

Turbonomic recommends an action at the time that the conditions warrant it. If you have scheduled action execution for a later time, then conditions could change enough that the action is no longer valid. If this happens, and the action remains invalid for 24 hours, then Turbonomic removes it from the list of pending actions. This action will not be executed.

Turbonomic includes Scaling Constraints that work to stabilize action decisions for VMs. The resulting actions are more likely to remain valid up until their scheduled window for execution. You can make these settings in default or scoped policies.

- **Aggressiveness (on page 269)**
 To drive actions based on peak utilization, analysis considers a utilization percentile. For example, assume a 95th percentile. The percentile utilization is the highest value that 95% of the observed samples fall below. The lower the percentile, the more aggressive the setting.

 This setting avoids actions based on transient spikes. For scheduled policies, if you put off execution to a time after the action was posted, it means the action is more likely to be viable when the scheduled time arrives.

- **Max Observation Period (on page 269)**
This sets the time period to consider when calculating the utilization percentile. A longer period means there are more data points to account for. This results in more stable resize calculations, which are more likely to remain viable for scheduled execution.

- **Min Observation Period** *(on page 270)*

This ensures a minimum of days worth of data for the calculation of percentiles in **Aggressiveness**. Ensuring a minimum of historical data makes it more likely that calculated resize actions will remain viable, even during the "down" times of a maintenance window.

NOTE:
When you configure a schedule window for a resize action, to ensure Turbonomic will execute the action during the scheduled time, you must turn off the **Enforce Non Disruptive Mode** setting for that scheduled policy. Even if you turn the setting off for the global policy, you still must turn the setting off for your scheduled policy. Otherwise Turbonomic will not execute the resize action. For information about non disruptive mode, see **Non Disruptive Mode** *(on page 243)*.

Action Automation

To avoid problems in your environment, Turbonomic analysis identifies actions that you can execute to keep things in optimal running order. You can specify the **degree of automation** you want for these given actions. For example, in some environments you might not want to automate resize down of VMs because that is a disruptive action. You would use **action modes** in a policy to set that business rule.

Action modes specify the degree of automation for the generated actions. For example, in some environments you might not want to automate resize down of VMs because that is a disruptive action. You would use action modes in a policy to set that business rule.

Turbonomic supports the following action modes:

- **Disabled** — Do not recommend or perform the action

 When you disable an action, Turbonomic never considers that action in its calculations. For example, if you disable Resize for all VMs in a group, then analysis will still drive toward the desired state, but will do so without considering resize actions for those VMs. Disabled actions do not show in the Pending Actions List.

- **Recommend** — Recommend the action so a user can execute it via the given hypervisor or by other means

- **Manual** — Recommend the action, and provide the option to execute that action through the Turbonomic user interface

- **Automated** — Execute the action automatically
Default Action Modes and Automation Support

Turbonomic ships with default policies with predefined action modes for all entity types. These policies do not enable automation, thus giving you control over all automation decisions.

You can edit the defaults if you want to change analysis settings globally or create policies with different values for any of the given settings.

If you plan to automate certain actions, be aware that Turbonomic doesn’t automate the same actions equally for all technologies. This is because the underlying technologies do not provide the same degree of automation. For example, assume you set the Storage Move actions to be automated for all VMs. In that case, Turbonomic can automate storage moves for VMs managed by vCenter and RHEV, but it cannot automatically execute storage moves for VMs managed by Hyper-V or XenServer. This is because Hyper-V and XenServer do not provide programmatic access to the Storage Move operation. In this case, Turbonomic will continue to recommend that you perform the storage move using the Hyper-V or XenServer console.

The following tables list the actions that Turbonomic supports on each entity, and show whether the underlying technology supports automation or recommended-only actions.

- Indicates full automation support.
- Indicates recommended-only actions.

Application

For Guest OS processes, Turbonomic doesn’t perform actions on applications. Instead, it performs actions on the host VMs. If utilization is high enough on an application, Turbonomic can create a new copy of the host VM. When an application is idle, it loses budget.

The following default action modes apply in conjunction with the Scaling Policy set to Resize. If you change the Scaling Policy to Provision, Turbonomic will not recommend resize actions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Microsoft Exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Recommend</td>
<td>Auto</td>
</tr>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td>Rond</td>
</tr>
</tbody>
</table>
Application Server

Turbonomic performs the following actions for application servers. Remember that if the Scaling Policy is set to Provision, it will not recommend resize actions, and if the Scaling Policy is set to Resize it will not recommend start, provision, or suspend actions.

NOTE:

For IBM WebSphere actions, it's possible that one WebSphere application server can have actions on heap and threads at the same time. In that case, do not execute both actions at the same time. In many cases, a WebSphere action is disruptive, and requires a restart of the WebSphere node. If you execute an action while the node is restarting, the action will fail. Before executing a second action on the same WebSphere node, be sure the node is not restarting in response to the first action.

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Microsoft Exchange</th>
<th>WebSphere</th>
<th>WebLogic</th>
<th>JBoss</th>
<th>Tomcat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspend</td>
<td>Recommend</td>
<td>Auto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resize up</td>
<td>Recommend</td>
<td>Rand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resize up (heap)</td>
<td>Recommend</td>
<td>Auto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resize down</td>
<td>Recommend</td>
<td>Rand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resize down (heap)</td>
<td>Recommend</td>
<td>Auto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Business Application

Turbonomic does not recommend actions for the Business Application, but it does recommend actions for the applications and infrastructure that the Business Application consumes.
NOTE:
The credentials for the service account that Turbonomic uses to access the AppDynamics target are read-only. For this reason, all of the Business Application actions are set to *Recommend*.

Chassis
Turbonomic does not recommend actions for a chassis.

Database Server
Turbonomic performs the following actions for database servers. Remember that if the Scaling Policy is set to Provision, it will not recommend resize actions, and if the Scaling Policy is set to Resize it will not recommend start, provision, or suspend actions. Also note, while Turbonomic does not automate actions directly on the database, it does automate actions on the underlying VM.

For on-prem database servers, Turbonomic can recommend actions on database memory, connections, and the transaction log.

NOTE:
Resize actions based on the TransactionLog resource depend on support for vStorage in the underlying hypervisor technology. Because current versions of Hyper-V do not provide API support for vStorage, Turbonomic cannot support TransactionLog resize actions for database servers running on the Hyper-V platform.

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Oracle</th>
<th>SQLServer</th>
<th>MySQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize down (transaction log)</td>
<td>Recommend</td>
<td>Rend</td>
<td>Rend</td>
<td>Rend</td>
</tr>
<tr>
<td>Resize down (MEM and connections capacity)</td>
<td>Recommend</td>
<td>Rend</td>
<td>Rend</td>
<td>Rend</td>
</tr>
<tr>
<td>Resize up (transaction log)</td>
<td>Recommend</td>
<td>Rend</td>
<td>Rend</td>
<td>Rend</td>
</tr>
<tr>
<td>Resize up (MEM and connections capacity)</td>
<td>Recommend</td>
<td>Rend</td>
<td>Rend</td>
<td>Rend</td>
</tr>
</tbody>
</table>

Datacenter
Turbonomic does not recommend actions to perform on a datacenter.

Desktop Pool
Turbonomic does not recommend actions to perform on a desktop pool. It does recommend actions to perform on the business users running active sessions in the pool.

Disk Array
The following table describes the default action mode for disk array actions and automation support for environments that have Disk Array Storage Controllers as targets.

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Dell Compellent</th>
<th>HP 3Par</th>
<th>NetApp ONTAP</th>
<th>VMAX</th>
<th>VNX</th>
<th>Nutanix</th>
<th>Pure Storage</th>
<th>XTremIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>Disabled</td>
<td></td>
<td></td>
<td>(C-Mode, only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Working With Policies

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Dell Compellent</th>
<th>HP 3Par</th>
<th>NetApp ONTAP</th>
<th>VMAX</th>
<th>VNX</th>
<th>Nutanix</th>
<th>Pure Storage</th>
<th>XTremIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Resize (up)</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Start</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Suspend</td>
<td>Disabled</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
</tbody>
</table>

Host (Physical Machine)

Turbonomic recommends the following actions for an on-prem host:

- **Start Host**
 For increased demand on physical resources, start up a suspended host.

- **Provision Host**
 For increased demand of physical resources, install a new host in the environment. Turbonomic will then move workload to that host.

- **Suspend Host**
 For underutilized resources on a host, move existing workload to other hosts and suspend the host.

NOTE:
Turbonomic discovers VMware HA configurations in clusters, and considers the reserved resources in its calculations. For tolerated host failures, or a reserved percentage of cluster resources, Turbonomic automatically sets utilization constraints for that cluster. If you configure a failover host, Turbonomic reserves that host for HA and will not move VMs to it.

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>vCenter</th>
<th>XenServer</th>
<th>Hyper-V</th>
<th>RHEV</th>
<th>UCS (blades only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Recommend</td>
<td>Auto</td>
<td>Rand</td>
<td>Rand</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Suspend</td>
<td>Recommend</td>
<td>Auto</td>
<td>Rand</td>
<td>Rand</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Host (Availability Zone)

For the public cloud, Turbonomic does not recommend host actions.
Logical Pool

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspend</td>
<td>Disabled</td>
</tr>
<tr>
<td>Start</td>
<td>Disabled</td>
</tr>
<tr>
<td>Resize</td>
<td>Recommend</td>
</tr>
<tr>
<td>Move</td>
<td>Disabled</td>
</tr>
<tr>
<td>Provision</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Volume

Turbonomic recommends the following actions for a Volume:

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>AWS</th>
<th>Azure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Manual</td>
<td>Auto</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Storage (Datastore)

Turbonomic recommends the following actions for a datastore:

- **Move**

 For high utilization of physical storage, move datastore to a different disk array (aggregate).

- **Provision**

 For high utilization of storage resources, provision a new datastore.

- **Resize**

 Increase or decrease the datastore capacity.

- **Start**

 For high utilization of storage resources, start a suspended datastore.

- **Suspend**

 For low utilization of storage resources, move served VMs to other datastores and suspend this one.

- **Delete Datastore or Volume**

 Delete a datastore or volume that has been suspended for a period of time.

The following are the storage actions and automation support for environments that do not include Disk Array Storage Controllers as targets.
Action

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>vCenter</th>
<th>XenServer</th>
<th>Hyper-V</th>
<th>RHEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>Recommend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>Recommend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resize (Up, Down, Above Max, or Below Min - using tuned scaling)</td>
<td>Recommend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For datastores on disk arrays:

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Dell Compellent</th>
<th>HP 3Par</th>
<th>NetApp ONTAP</th>
<th>VNX</th>
<th>VMAX</th>
<th>Nutanix</th>
<th>Pure Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete (Volume)</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Suspend</td>
<td>Manual</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Delete (Datastore)</td>
<td>Disabled</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Move</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Start</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
<tr>
<td>Resize (Up, Down, Above Max, or Below Min - using tuned scaling)</td>
<td>Recommend</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
</tbody>
</table>

Storage resize actions use Turbonomic tuned scaling settings. This gives you increased control over the action mode Turbonomic will use for the affected actions. Use Storage Operational Constraints to set up the scaling Range (see [Operational Constraints](on page 264)). For an overview of tuned scaling, see [Tuned Scaling](on page 241).

Storage Controller

Actions for individual Disk Array Storage Controllers:

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>Dell Compellent</th>
<th>HP 3Par</th>
<th>NetApp ONTAP</th>
<th>VNX</th>
<th>VMAX</th>
<th>Nutanix</th>
<th>Pure Storage</th>
<th>XTremIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision</td>
<td>Disabled</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
<td>Rand</td>
</tr>
</tbody>
</table>

Switch

For environments that have Fabric Managers as targets:
Virtual Application

Turbonomic does not recommend actions to perform on the virtual application itself, but it does recommend actions to perform on the VMs that host bound applications. For example, a virtual application that manages three SQL databases sees a surge in requests that degrades performance across all databases. In this scenario, Turbonomic can start a new VM to run another instance of the database application, and bind it to the virtual application.

Virtual Datacenter

Turbonomic does not recommend actions to perform on a vDC (Container Orchestrator, Provider, or Consumer). Instead, it recommends actions to perform on the entities that provide resources to the vDC.

For direct actions on VCloud Director and CloudStack virtual datacenters, Turbonomic only supports resize actions. However, Turbonomic does automate actions for the underlying entities (VMs and hosts) that are managed by the virtual datacenter.

Virtual Machine

For on-prem VMs, Turbonomic supports the following actions:
Working With Policies

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>vCenter</th>
<th>XenServer</th>
<th>Hyper-V</th>
<th>RHEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>vMem Resize Above Max (uses tuned scaling)</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td>Rcmd</td>
<td>Rcmd</td>
<td>Rcmd</td>
<td>Rcmd</td>
</tr>
<tr>
<td>vMem Resize Up (uses tuned scaling)</td>
<td>Manual</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>vCPU Resize Below Min (uses tuned scaling)</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>vCPU Resize Above Max (uses tuned scaling)</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Storage Move</td>
<td>Recommend</td>
<td>Auto</td>
<td>Rcmd</td>
<td>Rcmd</td>
<td>Auto</td>
</tr>
<tr>
<td>Start</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>vMem Resize Below Min (uses tuned scaling)</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Reconfigure (Change network and storage configurations)</td>
<td>Recommend</td>
<td>Rcmd</td>
<td>Rcmd</td>
<td>Rcmd</td>
<td>Rcmd</td>
</tr>
<tr>
<td>vCPU Resize Up (uses tuned scaling)</td>
<td>Manual</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Suspend</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enforcement Options</th>
<th>Default Mode</th>
<th>AWS</th>
<th>Azure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Disruptive Mode (on page 243)</td>
<td>Off</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shared-Nothing Migration (on page 244)</td>
<td>Off</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Use hypervisor VMEM for resize (on page 245)</td>
<td>On</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

For VMs on the public cloud:

<table>
<thead>
<tr>
<th>Action</th>
<th>Default Mode</th>
<th>AWS</th>
<th>Azure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy RI</td>
<td>Recommend</td>
<td>Rcmd</td>
<td>Rcmd</td>
</tr>
<tr>
<td>Move / Compute Scale</td>
<td>Manual</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Storage Move / Storage Scale</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Move (to a different region)</td>
<td>Recommend</td>
<td>Rcmd</td>
<td>Rcmd</td>
</tr>
<tr>
<td>Provision</td>
<td>Recommend</td>
<td>Rcmd</td>
<td>Rcmd</td>
</tr>
<tr>
<td>Start</td>
<td>Recommend</td>
<td>Auto</td>
<td>Auto</td>
</tr>
</tbody>
</table>
For on-prem environments, VMEM and VCPU resize actions use Turbonomic tuned scaling settings. This gives you increased control over the action mode Turbonomic will use for the affected actions. Use VM Operational Constraints to set up the tuned scaling range (see Operational Constraints (on page 266)). For an overview of tuned scaling, see Tuned Scaling (on page 241).

For on-prem VMs, actions can change resources in the following ways:

- **Resize resource capacity**
 Change the capacity of a resource that is allocated for the VM. For example, a resize action might recommend increasing the VMem available to a VM.

- **Resize resource reservation**
 Change the amount of a resource that is reserved for a VM. For example, a VM could have an excess amount of memory reserved. That can cause memory congestion on the host — A resize action might recommend reducing the amount reserved, freeing up that resource and reducing congestion.

- **Resize resource limit**
 Change the limit that is set on the VM for a resource. For example, a VM could have a memory limit set on it. If the VM is experiencing memory shortage, an action that decreases or removes the limit could improve performance on that VM.

NOTE:
Actions for on-prem VMs include the modifier, Enforce Non Disruptive Mode. When you enable this modifier, Turbonomic ensures that for Automated and Manual modes, any resize actions that can be executed will not require a reboot or any other disruption to the affected VM. If the action will disrupt the VM, Turbonomic posts the action in Recommend mode. If it will not cause any disruption, then Turbonomic can post it as Automated or Manual.

Tuned Scaling

For resizing VMs and Storage, Turbonomic includes tuned scaling action settings. These settings give you increased control over the action mode for various resize actions. With this feature, you can automate resize actions within a normal range (the tuned scaling range), and direct Turbonomic to post more conservative actions (Manual or Recommend) when the issue lies outside of the scaling range.

For example, consider resizing VMs to add more memory. As memory demand increases on a VM, Turbonomic can automatically allocate more memory. If the hosted application is in a runaway state (always requesting more memory) and ultimately falls outside of the normal range, Turbonomic will not automate memory resize for the VM.

To configure tuned scaling, create a VM or Storage policy (see Creating Automation Policies (on page 223)). Under Action Automation, configure the action mode for the various resize actions, which are listed in the table below for your reference. Note that Resize Up and Resize Down settings are for conditions within the tuned scaling range, while Above Max and Below Min settings are for outlying conditions. Finally, under Operational Constraint, specify the tuned scaling range.

<table>
<thead>
<tr>
<th>Entity Type</th>
<th>Resize Actions</th>
<th>Operational Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM</td>
<td>VCPU Resize Up</td>
<td>VCPU Max Size</td>
</tr>
<tr>
<td></td>
<td>VCPU Resize Down</td>
<td>VCPU Min Size</td>
</tr>
</tbody>
</table>

Turbonomic 7.22.1 User Guide 241
Working With Policies

Entity Type

<table>
<thead>
<tr>
<th>Resize Actions</th>
<th>Operational Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>• VCPU Resize Above Max</td>
<td>• VMEM Max Size</td>
</tr>
<tr>
<td>• VCPU Resize Below Min</td>
<td>• VMEM Min Size</td>
</tr>
<tr>
<td>• VMEM Resize Up</td>
<td></td>
</tr>
<tr>
<td>• VMEM Resize Down</td>
<td></td>
</tr>
<tr>
<td>• VMEM Resize Above Max</td>
<td></td>
</tr>
<tr>
<td>• VMEM Resize Below Min</td>
<td></td>
</tr>
</tbody>
</table>

Storage

<table>
<thead>
<tr>
<th>Resize Actions</th>
<th>Operational Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Storage Resize Up</td>
<td>• Storage Max Size</td>
</tr>
<tr>
<td>• Storage Resize Down</td>
<td>• Storage Min Size</td>
</tr>
<tr>
<td>• Storage Resize Above Max</td>
<td></td>
</tr>
<tr>
<td>• Storage Resize Below Min</td>
<td></td>
</tr>
</tbody>
</table>

For example, assume the following settings:

With this policy in effect, Turbonomic will post the following actions:

- A VM with 6 VCPUs requests 2 new VCPUs: Automated
- A VM with 8 VCPUs requests 2 new VCPUs: Manual
- A VM with 2 VCPUs requests to resize down to 1 VCPU: Disabled (Turbonomic does not post the action)

Action policies include scope to determine which entities will be affected by the given policy. It’s possible for two or more policies to affect the same entities. As is true for other policy settings, tuned scaling uses the most conservative settings for the affected entities. The effective action mode will be the most conservative, and the effective tuned scaling range will be the narrowest range (the lowest MAX and highest MIN) out of the multiple policies that affect the given entities. For more information, see [Policy Scope (on page 229)](#).
You can schedule automation policies to take effect during a certain window of time. You can include tuned scaling settings in a scheduled window, the same as you can schedule other policy settings. For more information, see Policy Schedule (on page 230).

Non Disruptive Mode

VM actions include the modifier, **Enforce Non Disruptive Mode**. When you enable this modifier, Turbonomic ensures that for *Automated* and *Manual* modes any resize actions that can be executed will not require a reboot or any other disruption to the affected VM. If the action will disrupt the VM, Turbonomic posts the action in *Recommend* mode. If it will not cause any disruption, then Turbonomic can post it as *Automated* or *Manual*.

For example, with VMware technologies you must have VMware Tools installed to enable hot resize of a VM. Assume you have VMware Tools installed on the guest OS for VM-A, but not for VM-B, and you have set **Resize up to Automated** for the cluster:

- If you enable this modifier for VM actions:
 Turbonomic will automate resize actions for VM-A, but will only recommend resize actions for VM-B.
- If you do not enable this modifier for VM actions:
 Turbonomic will automate resize actions for VM-A and VM-B.

Another disruptive action is resizing up to more than 4 vCPUs on Windows 2008 and Windows 2008 R2 systems. Even if Hot Add is enabled for the system, Turbonomic considers such a resize to be disruptive.

If you have set the actions to *Manual*, the effect is the same — Turbonomic will post the manual actions to the actions list only if they are not disruptive to the VM’s operation. Otherwise the actions will be in *Recommend* mode. Enforcing non disruptive mode is a way to safely automate resize actions for VMs.

In addition to the **Enforce Non Disruptive Mode** setting, Turbonomic automatically discovers the VMs that support Hot Add of CPU and Memory, and places these VMs in groups. You can use these groups the same as you would any other groups.

In SEARCH, find groups that support Non Disruptive mode or Hot Add

![Non Disruptive Groups](image)

Non Disruptive Groups — Find these groups in the SEARCH view

You can enforce non disruptive mode in the default VM policy, and then schedule action policies to automate resize actions during downtimes. Be aware that scheduled actions do not respect the enforced non disruptive mode — Scheduled resize actions will execute during the scheduled window even if they require a reboot. This is useful for
setting up certain action behaviors, but you must be aware that enforced non-disruptive mode has no effect on scheduled actions.

NOTE:
When you configure a schedule window for a resize action, to ensure Turbonomic will execute the action during the scheduled time, you must turn off the Enforce Non Disruptive Mode setting for that scheduled policy. Even if you turn the setting off for the global policy, you still must turn the setting off for your scheduled policy. Otherwise Turbonomic will not execute the resize action.

Shared-Nothing Migration

If you have enabled both storage and VM moves, Turbonomic can perform shared-nothing migrations, which move the VM and the stored VM files simultaneously. For example, assume a VM on a host also uses local storage on that host. In that case, Turbonomic can move that VM and move its data to a different datastore in a single action.

Currently, the following targets support shared-nothing migrations:

- vSphere, versions 5.1 or greater
- VMM for Hyper-V 2012 or later

Because of this feature's potential impact on performance, it is turned off by default. Turbonomic recommends enabling it only on VMs that need it. To do this, you must first set the action mode for VM and storage moves to either Manual or Automated, and then enable the feature in a VM policy.

If a policy that enables this feature conflicts with a more conservative policy, the latter policy wins. For example, if compute move is set to Manual, storage move is set to Recommend, and shared-nothing migration is turned on, shared-nothing migration is in effect but remains in Recommended state.

NOTE:
Turbonomic does not simulate shared-nothing migrations in plans.
Hypervisor VMEM for Resize

For on-prem environments, Turbonomic discovers VMEM utilization and can recommend actions to resize the VMEM capacity on a VM. For environments that do not include any Guest OS Process targets, the data that analysis uses to make these recommendations comes from the underlying hypervisors. However, that data is not always sufficient to result in accurate resize recommendations. Use the Use Hypervisor VMEM for Resize setting to determine how to generate VMEM recommendations:

- **On** (default)
 When your environment includes Guest OS Process targets, Turbonomic uses the VMEM metrics those targets discover. If a scope of VMs does not fall under Guest OS Process targets, then analysis *will* generate VMEM resize actions for that scope. In this case, analysis uses the VMEM metrics it discovers from the underlying hypervisors.

- **Off**
 When your environment includes Guest OS Process targets, Turbonomic uses the VMEM metrics those targets discover. If a scope of VMs does not fall under Guest OS Process targets, then analysis *will not* generate VMEM resize actions for that scope.

Action Mode Configuration

There are two ways to configure action modes:

- Change the action mode in a default policy. For details, see Working With Default Automation Policies (on page 221).
- Create an automation policy, scope the policy to specific entities or groups, and then select the action mode for each action.

Turbonomic allows you to create dynamic groups to ensure that entities discovered in the future automatically add to a group and apply the policy of that group. If a conflict arises as a result of an entity belonging to several groups, the entity applies the policy with the most conservative action.

For details, see Creating Scoped Automation Policies (on page 223).

Deploying Action Scripts

Action Scripts provide an interface that can add custom processing to Turbonomic actions. The scripts execute on a remote server (a VM or a container) that you have configured as a Turbonomic target. That server includes a manifest file that identifies the scripts you have deployed, as well the entities and actions they can respond to. Turbonomic discovers these scripts via the manifest and presents them as orchestration options for actions in automation policies.

For example, assume you have defined a script with:

- name: MyHostMoveAction
- entityType: PHYSICAL_MACHINE
- actionType: MOVE

Following this example, you can use the API to add orchestration to a policy for move actions on Hosts. Because you have defined a script for that action, you can specify Action Script as the orchestration type, and you can choose the MyHostMoveAction script as the orchestration workflow to perform.
To deploy your action scripts, you will:

- Set up the remote action script server (see Setting Up the Action Script Server (on page 246))
- Create the action script executables on the remote server (see Creating Action Scripts (on page 247))
- Deploy the Action Script Manifest on the remote server (see Deploying the Action Script Manifest (on page 248))

Setting Up the Action Script Server

Turbonomic uses remote servers to execute action scripts. Managing the processes remotely means that you do not install custom code on the Turbonomic server, which eliminates associated security risks there. However, you are responsible for maintaining the security of your action script server, to ensure the integrity of your custom code. To accomplish this, the configuration of the remote server must meet certain requirements.

Resource Requirements for the Server

The remote server can be a VM or a container. The capacity you configure for the server depends entirely on the processes you intend to run on it. Turbonomic does not impose any special resource requirements on the server.

Configuring Command Execution

To support execution of your scripts, you must install any software that is necessary to run the scripts. This includes libraries, language processors, or other processes that your scripts will invoke.

Turbonomic invokes the scripts as commands on the server. The server must run an SSH service that you have configured to support command execution and SFTP operations. At this time, Turbonomic has tested action scripts with the OpenSSH sshd daemon.

The standard port for SSH is 22. You can configure a different port, and provide that for admins who configure the server as an Action Script target.

Note that an action script can invoke any process you have deployed on the remote server. You do not have to run scripts per se. However, you must be able to invoke the processes from the command line. The script manifest gives Turbonomic the details it needs to build the command line invocation of each script.

Configuring the Action Script User Account

To execute the scripts on your server, Turbonomic logs on via a user account that is authorized to execute the scripts from the command line. You provide the user credentials when you configure the Action Script target. To support this interaction, the user account must meet the following requirements:

- Public Key
 The user must have a public key in the .ssh/authorized_keys file. When you configure the Action Script target, you provide this as the Private Token for the target.
- Security for the .ssh Directory
 The Action Script User should be the only user with authorized access. You should set file permissions to 600.
- Supported Shells
 The Action Script User shell can be either the Bourne shell (usually at /bin/sh) or the Bourne-Again shell (usually at /bin/bash). Turbonomic passes parameters as it invokes your scripts. At this time it only supports script execution through these shells.
Handling Action Script Timeouts

Turbonomic limits script execution to 30 minutes. If a script exceeds this limit, Turbonomic sends a `SIGTERM` to terminate the execution of the process.

Note that Turbonomic does not make any other attempt to terminate a process. For example you could implement the script so it traps the `SIGTERM` and continues to run. The process should terminate at the soonest safe opportunity. However, if the process does not terminate, then you must implement some way to terminate it outside of Turbonomic. Note that a runaway process continues to use its execution thread. This can block other processes (action scripts or primary processes) if there are no more threads in the pool.

Creating Action Scripts

An action script can be any executable that a user can invoke from a command line. You can save these executable files anywhere on the server – The Manifest indicates the path to the file (see Deploying the Action Script Manifest [on page 248]). The Action Script user that you have configured for the script server must have access to your script files, with read and execution privileges.

To execute a script, Turbonomic builds the appropriate SSH command from the manifest information it has discovered. It grants a timeout limit of 30 minutes by default, or the manifest entry can declare a different limit. If the execution exceeds the limit, Turbonomic sends a `SIGTERM` to terminate the process.

Passing Information to the Action Script

Turbonomic uses two techniques to pass information about an action to the associated action script:

- Pass general information via environment variables
- Pass full action data via `stdin`

To pass general information into the script, Turbonomic sets environment variables on the Action Script server. You can reference these environment variables in your scripts. For example, assume you want to send an email that includes the name of the VM that is an action target. You can get that name via the `VMT_TARGET_NAME` environment variable.

The following list shows the environment variables that Turbonomic can set when it executes a script. Note that not all of these variables apply for every action. For example, an action to scale VMEM does not include providers, so the action does not include values for the `VMT_CURRENT_INTERNAL`, `VMT_CURRENT_NAME`, `VMT_NEW_INTERNAL`, or `VMT_NEW_NAME` variables. If a given variable does not apply, Turbonomic sets it to an empty string.

- `VMT_ACTION_INTERNAL`
 The UUID for the proposed action. You can use this to access the action via the REST API. For example, your script could accept or cancel the action according to its own criteria.
- `VMT_ACTION_NAME`
 The name of the action.
- `VMT_CURRENT_INTERNAL`
 The internal name for the current provider.
- `VMT_CURRENT_NAME`
 The display name for the current provider.
- `VMT_NEW_INTERNAL`
 The internal name for the new provider.
- `VMT_NEW_NAME`
The display name for the new provider.

- **VMT_TARGET_INTERNAL**
 The internal name of the entity this action will affect.

- **VMT_TARGET_NAME**
 The display name of the entity this action will affect.

- **VMT_TARGET_UUID**
 The UUID of the entity this action will affect. You can use this to access the target entity via the REST API. For example, you can get historical statistics or you can change settings for the entity.

For some scripts, you might need a complete description of the associated action. For example, assume you want to analyze the utilization metrics for a given resource. The environment variables for passing general information do not include this information.

When it invokes an action script, Turbonomic passes the complete data for the associated action via `stdin`. Your script can load this into a variable to access the specific data it needs. For example, the following loads `stdin` into `myActionData`:

```bash
myActionData=$(cat -)
```

`stdin` contains a JSON string that represents of the full data associated with this action. For example, the `myActionData` variable could contain a string similar to:

```json
{"actionType":"RIGHT_SIZE","actionItem": [{"actionType":"RIGHT_SIZE","uuid":"143688943343760","targetS
  E": {"entityType":"VIRTUAL_MACHINE","id":"4200fcdb-eafe-2a4a-abf5-a7ad2b00555c"...}
```

Deploying the Action Script Manifest

The Action Script Manifest identifies the scripts that you want to expose to Turbonomic. You provide the location of the manifest as part of the Action Script Target configuration — After Turbonomic validates the target, it then discovers these scripts and presents them in the Orchestration Policy user interface.

Creating the Scripts Manifest File

The Scripts Manifest is a file that declares an array of Script Objects for each script you want to expose. You can create the manifest as either a JSON or a YAML file.
For example, following are two examples of the same manifest – One in YAML and the other in JSON. Notice that in either case, the manifest is an array of two Script objects:

- **YAML Manifest:**

```yaml
scripts:
  - name: MyVmMovePrep
    description: Execute this script in preparation to a VM Move
    scriptPath: vmScripts/movePrep.sh
    entityType: VIRTUAL_MACHINE
    actionType: MOVE
    actionPhase: PREP
  - name: MyHostMoveGen
    description: Execute this when a Host Move is generated
    scriptPath: pmScripts/moveGen.sh
    entityType: PHYSICAL_MACHINE
    actionType: MOVE
    actionPhase: GEN
```

- **JSON Manifest:**

```json
{
  "scripts": [
    {
      "name": "MyVmMovePrep",
      "description": "Execute this script in preparation to a VM Move",
      "scriptPath": "vmScripts/movePrep.sh",
      "entityType": "VIRTUAL_MACHINE",
      "actionType": "MOVE",
      "actionPhase": "PREP"
    },
    {
      "name": "MyHostMoveGen",
      "description": "Execute this when a Host Move is generated",
      "scriptPath": "pmScripts/moveGen.sh",
      "entityType": "PHYSICAL_MACHINE",
      "actionType": "MOVE",
      "actionPhase": "GEN"
    }
  ]
}
```

You can save the Scripts Manifest file to any location on your server, so long as the Scripts User has access to that location, and has read and execute privileges. You will provide this location as the **Script Path**, which the Turbonomic administrator will give as part of the Action Script target configuration.

Note that the filename extension for the manifest must match the file format (either YAML or JSON). For example, you should name the file either `MyManifest.yaml` or `MyManifest.json`, respectively.
Declaring Script Objects

Each script object in the manifest can contain the following fields:

- **name**
 Required – The name for this action script. After Turbonomic discovers your scripts, it displays this name as a Orchestration Workflow choice in the user interface for creating orchestration policies.

- **description**
 Optional – A description of the script. The Turbonomic user interface does not display this description.

- **scriptPath**
 Required – The path to the executable for this entry. You can give an absolute path, or a path that is relative to the location of the Scripts Manifest. The Action Script User that you set up for the Action Script server must have read and execute privileges for the executable file.

- **entityType**
 Required – The type of entity this script responds to. Can be one of:
 - Switch
 - VIRTUAL_DATACENTER
 - STORAGE
 - DATABASE_SERVER
 - WEB_SERVER
 - VIRTUAL_MACHINE
 - DISK_ARRAY
 - DATA_CENTER
 - PHYSICAL_MACHINE
 - CHASSIS
 - STORAGE_CONTROLLER
 - IO_MODULE
 - APPLICATION_SERVER
 - APPLICATION
 - CONTAINER
 - CONTAINER_POD
 - LOGICAL_POOL
 - STORAGE_VOLUME
 - DPOD
 - VPOD
 - DATABASE
 - LOAD_BALANCER

 To configure the same script to respond to actions on different entity types, declare separate entries for that script, one for each entity type.

- **actionType**
 Required – The type of action this script responds to. Note that different entity types can support different actions. Can be one of:
 - START
- **MOVE**
- **SUSPEND**
- **TERMINATE**
- **SPAWN**
- **ADD_PROVIDER**
- **CHANGE**
- **REMOVE_PROVIDER**
- **PROVISION**
- **RECONFIGURE**
- **RIGHT_SIZE**
- **RESIZE_CAPACITY**
- **WARN**
- **RECONFIGURE_THRESHOD**
- **DELETE**
- **RESERVE_ON_PM**
- **RESERVE_ON_DS**

- **actionPhase**

 Required – Where in the life cycle of an action that you want your script to execute.

 Can be one of:

 - **GEN**

 Turbonomic has generated the action, and it is waiting to be executed. It might be pending approval from a third-party integration, or it might be a MANUAL action that is pending a user choice to select and execute the action.

 Run your script when Turbonomic first posts the action.

 - **PREP**

 For an action that has been accepted, or an AUTOMATED action before it executes, this state is a preparation phase where your script can execute just before the action itself executes.

 Run your script to set up conditions just before the action executes.

 - **REPLACE**

 For action execution, your script executes *in stead of* the execution that Turbonomic would perform.

 Run your script as a replacement for the Turbonomic action.

 - **POST**

 The action has completed execution, either in a SUCCEEDED or FAILED state.

 Run your script after the action has completed execution.

 - **CLEAR**

 The action has been cleared. For example, the conditions that caused Turbonomic to post the action have resloved on their own.

 Run your script when the action has been cleared.
• **timeLimitSeconds**

 Optional – How long to run the action before assuming a timeout. When execution exceeds this limit, Turbonomic sends a `SIGTERM` to terminate the execution of the process.

 If you do not provide a value, Turbonomic assumes a limit of 30 minutes (1800 seconds).

Analysis Settings

Turbonomic collects metrics to drive the analysis that it uses when it calculates actions for your environment. It compares current utilization and demand against allocated capacities for resources, so it can recommend actions that keep your environment in optimal running condition.

Action policies include settings that you can make to adjust the analysis that Turbonomic performs. For example, you can set different levels of overprovisioning for host or VM resources, and Turbonomic will consider that as a factor when deciding on actions.

Turbonomic ships with a set of default analysis settings. These settings take effect until you create and apply a policy with different values for any of the given settings. For the steps in creating a new policy, see [Creating Scoped Automation Policies](on page 223). You can edit the defaults if you want to change analysis settings globally.

The settings you can make are different for different types of entities. The default policies show all the settings you can make for each policy type.

Analysis Policies: Global Defaults

Use these settings to modify Turbonomic analysis globally for any scope of your environment. These defaults affect both scoped automation policies and default automation policies.

ACTION AUTOMATION: Disable All Actions

Default value: OFF

When this is ON, Turbonomic does not generate any actions for your environment. For example, assume you have configured a number of polices that automate actions, but you want to stop making changes to the entire environment for a period of time. Turn this ON to stop all execution with a single setting.

OPERATIONAL CONSTRAINTS VM Growth Observation Period

Default value: 1 month

Use this setting to specify how much historical data the Turbonomic analysis will use to calculate time to exhaustion of your cluster resources.

Turbonomic runs nightly plans to calculate headroom for the clusters in your on-prem environment. To review your cluster headroom in dashboards, set the view scope to a cluster. With that scope, the view includes charts to show headroom for that cluster, as well as time to exhaustion of the cluster resources.

To calculate cluster growth trends, analysis uses historical data for the given clusters. With **VM Growth Observation Period**, you can specify how much historical data the headroom analysis will use to calculate time to exhaustion of your cluster resources. For example, if cluster usage is growing slowly, then you can set the observation to a period that is long enough to capture that rate of growth.
If the historical database does not include at least two entries in the monthly data for the cluster, then analysis uses daily historical data.

Analysis Policies: Applications
Turbonomic tracks utilization of resources for applications and application servers that you have set up as targets.

Default Settings

APPLICATION SERVER DISCOVERY

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Set Transactions Capacity</td>
<td>Disabled</td>
</tr>
<tr>
<td>Transactions Capacity</td>
<td>20</td>
</tr>
<tr>
<td>Response Time Capacity [ms]</td>
<td>10000</td>
</tr>
</tbody>
</table>

Transactions
This resource measures the number of transactions per second. Excess transactions indicate a heavy load on the application server, and usually means you should provision a new instance. You can set the transaction capacity, or direct Turbonomic to automatically set it.

- Transaction Capacity
 If you know the rate of transactions your applications can maintain, then you can set it here. The value that you set indicates when Turbonomic considers utilization to be 100%. The default value is 10 — If an application experiences 10 transactions per second or more, Turbonomic sets the risk index for this resource to 100%.

- Auto Set Transaction Capacity
 If you enable this setting, Turbonomic adjusts the transaction capacity to the upper limit your application server experiences. For example, if the Transaction Capacity is set to 10, and the application server experiences 15 transactions per second, then the utilization of this resource would be 150%. However, if you enable Auto Set Transaction Capacity, then Turbonomic would increase the capacity to 15, and show utilization at 100%.

Response Time
Response time capacity determines the upper limit for acceptable response time in your applications, in milliseconds. Very high response time can be a result of excess load on the application. For excess response time, Turbonomic can recommend to provision another application instance.

Analysis Policies: Application Servers
Turbonomic tracks utilization of resources for applications and application servers that you have set up as targets.

Default Settings
OPERATIONAL CONSTRAINTS
Attribute Values

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Set Transactions Capacity</td>
<td>Disabled</td>
</tr>
<tr>
<td>Response Time Capacity [ms]</td>
<td>10000</td>
</tr>
<tr>
<td>Transactions Capacity</td>
<td>20</td>
</tr>
</tbody>
</table>

Utilization Constraints

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection Time Utilization</td>
<td>10</td>
</tr>
<tr>
<td>Heap Utilization</td>
<td>80</td>
</tr>
</tbody>
</table>

Transactions

This resource measures the number of transactions per second. Excess transactions indicate a heavy load on the application server, and usually means you should provision a new instance. You can set the transaction capacity, or direct Turbonomic to automatically set it.

- **Transaction Capacity**

 If you know the rate of transactions your applications can maintain, then you can set it here. The value that you set indicates when Turbonomic considers utilization to be 100%. The default value is 10 — If an application experiences 10 transactions per second or more, Turbonomic sets the risk index for this resource to 100%.

- **Auto Set Transaction Capacity**

 If you enable this setting, Turbonomic adjusts the transaction capacity to the upper limit your application server experiences. For example, if the Transaction Capacity is set to 10, and the application server experiences 15 transactions per second, then the utilization of this resource would be 150%. However, if you enable Auto Set Transaction Capacity, then Turbonomic would increase the capacity to 15, and show utilization at 100%.

Response Time

Response time capacity determines the upper limit for acceptable response time in your applications, in milliseconds. Very high response time can be a result of excess load on the application. For excess response time, Turbonomic can recommend to provision another application instance.

Collection Time Utilization and Heap Utilization

For Java applications, Collection Time Utilization tracks the percentage of CPU time spent on garbage collection. The default setting is 10 — if 10% of CPU is devoted to garbage collection, then this resource is utilized at 100%.

Turbonomic tracks this utilization to refine action recommendations in response to Heap utilization. Assume Heap is utilized at 80% of its capacity. This means that Heap Utilization gains a high return (consumers pay a high price for this resource), and that indicates a shortage that can be addressed by provisioning more resources. However, if garbage collection is high, 80% Heap utilization might not indicate a shortage after all. Assume that Collection Time is at 8% of CPU time, which is 80% of its capacity. In that case, both Heap and Collection are at 80%, and the high cost of Collection cancels out the high return for Heap. As a result, Turbonomic will not recommend provisioning more Heap resources.

In the case of highly utilized Heap, if you set the constraint for Collection to a lower number, that tends to suppress recommendations to provision more Heap. On the other hand, setting a high Collection constraint (Garbage Collection can use more CPU cycles) tends to enable more resize up actions for Heap.
Analysis Policies: Business Applications
Turbonomic tracks utilization of resources for applications and application servers that you have set up as targets.

Default Settings
APPLICATION SERVER DISCOVERY

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Set Transactions Capacity</td>
<td>Disabled</td>
</tr>
<tr>
<td>Response Time Capacity [ms]</td>
<td>10000</td>
</tr>
<tr>
<td>Transactions Capacity</td>
<td>10</td>
</tr>
</tbody>
</table>

Transactions
This resource measures the number of transactions per second. Excess transactions indicate a heavy load on the application server, and usually means you should provision a new instance. You can set the transaction capacity, or direct Turbonomic to automatically set it.

- **Transaction Capacity**
 If you know the rate of transactions your applications can maintain, then you can set it here. The value that you set indicates when Turbonomic considers utilization to be 100%. The default value is 10 — if an application experiences 10 transactions per second or more, Turbonomic sets the risk index for this resource to 100%.

- **Auto Set Transaction Capacity**
 If you enable this setting, Turbonomic adjusts the transaction capacity to the upper limit your application server experiences. For example, if the Transaction Capacity is set to 10, and the application server experiences 15 transactions per second, then the utilization of this resource would be 150%. However, if you enable Auto Set Transaction Capacity, then Turbonomic would increase the capacity to 15, and show utilization at 100%.

Response Time
Response time capacity determines the upper limit for acceptable response time in your applications, in milliseconds. Very high response time can be a result of excess load on the application. For excess response time, Turbonomic can recommend to provision another application instance.

Analysis Policies: Business Users
Turbonomic tracks utilization of desktop image resources for the Business Users in your Virtual Desktop Infrastructure (VDI) environment.

UTILIZATION CONSTRAINTS
Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image CPU Target Utilization</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>The target utilization as a percentage of CPU capacity.</td>
</tr>
</tbody>
</table>
Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image MEM Target Utilization</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>The target utilization as a percentage of memory capacity.</td>
</tr>
<tr>
<td>Image Storage Target Utilization</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>The target utilization as a percentage of storage capacity.</td>
</tr>
</tbody>
</table>

SCALING CONSTRAINTS

Operational constraints for Business Users include:

- **Aggressiveness**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressiveness</td>
<td>95th Percentile</td>
</tr>
</tbody>
</table>

 When evaluating utilization of compute and storage resources, Turbonomic considers a given utilization percentile. For example, assume a 95th percentile. The maximum utilization would be the highest value that 95% of the observed samples fall below.

 Using a percentile, Turbonomic can recommend more relevant actions, so that analysis can better exploit elasticity in your environment. A percentile evaluates the sustained resource utilization, and ignores bursts that occurred for a small portion of the samples. You can think of this as aggressiveness of resizing, as follows:

 - 100th Percentile – The least aggressive, recommended for critical workloads that need maximum guaranteed performance at all times.
 - 95th Percentile (Default) – The recommended setting to achieve maximum performance and savings.
 - 90th Percentile – The most aggressive, recommended for non-production workloads that can stand higher resource utilization.

- **Max Observation Period**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Observation Period</td>
<td>Last 7 Days</td>
</tr>
</tbody>
</table>

 To refine the calculation of resource utilization, you can set the sample time to consider. Turbonomic uses historical data from up to the number of days that you specify as a sample period. (If the database has fewer days' data then it uses all of the stored historical data.)

 A shorter period means there are fewer data points to account for when Turbonomic calculates utilization percentiles. This results in more dynamic, elastic moves to different Desktop Pools, while a longer period results in more stable or less elastic moves. You can make the following settings:

 - Less Elastic – Last 90 Days
 - More Elastic – Last 30 Days
 - (Default) Most Elastic – Last 7 Days
Analysis Policies: Containers

OPERATIONAL CONSTRAINTS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Target VCPU Utilization</td>
<td>70</td>
</tr>
<tr>
<td>Default Value for containers on the public cloud, the target utilization as a percentage of VCPU capacity. For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
<td></td>
</tr>
</tbody>
</table>

| Scaling Target VMEM Utilization | 90 |
| Default Value for containers on the public cloud, the target utilization as a percentage of memory capacity. For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support. |

Scaling Constraints

Scaling constraints include settings that specify how Turbonomic takes actions to resize a container. The following table shows the default settings for Resize increments:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment constant for Container VMEM [MB]</td>
<td>1024</td>
</tr>
<tr>
<td>Increment constant for Container VCPU [MHz]</td>
<td>1800</td>
</tr>
</tbody>
</table>

For resize increments, you should consider the following:

- For VMem, you should not set the increment value to be lower than what is necessary for the container to operate. If the VMem increment is too low, then it’s possible that Turbonomic would allocate insufficient VMem for the machine to operate. For a container that is under utilized, Turbonomic will reduce VMem allocation by the increment amount, but it will not leave a container with zero VMem. For example, if you set this to 64, then Turbonomic cannot reduce the VMem to less than 64 MB.
- For VCPU, the increment affects resize of VCPU limits and reservations in MHz, and it also affects the addition/removal of cores for VCPU capacity on a container.
For limits and reservations, Turbonomic recommends changes in terms of the specified resize increment. For example, assume the increment is 1800 MHz and you have reserved 3000 MHz for a VM. Turbonomic could recommend to reduce the reservation by 1800, down to 1200 MHz.

For VCPUs, Turbonomic can only resize allocation one core at a time. This means a resize is to the nearest core count that matches or exceeds the resize increment. Assume the cores all have a clock speed of 2000 MHz. If the resize increment is 1800 MHz, then a resize up will recommend to add one more core at 2000 MHz.

Analysis Policies: Containers

Utilization Constraints

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCPU Request Utilization</td>
<td>99.99</td>
</tr>
<tr>
<td></td>
<td>For Kubernetes pods, the percentage of the specified VCPU Request that the pod can utilize.</td>
</tr>
</tbody>
</table>

Analysis Policies: Databases

OPERATIONAL CONSTRAINTS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Target VCPU Utilization</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>For databases on the public cloud, the target utilization as a percentage of VCPU capacity.</td>
</tr>
<tr>
<td></td>
<td>For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
</tr>
<tr>
<td>Scaling Target VMEM Utilization</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>For databases on the public cloud, the target utilization as a percentage of memory capacity.</td>
</tr>
<tr>
<td></td>
<td>For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
</tr>
</tbody>
</table>
SCALING CONSTRAINTS

- Excluded Cloud Tiers

Use this setting to ensure that a scope of VMs only uses the cloud tiers you want.

There are certain environments that use tiers to specify the resource allocations for a VM or other workload. Public cloud environments such as AWS or Azure use tiers, and some private cloud environments use them also.

For example, assume you need to add memory to a VM. For VMs running on hypervisors, Turbonomic calculates the amount of memory to add, and can then use the hypervisor's API to add exactly that memory to the VM. In a cloud environment, Turbonomic chooses the cloud tier that most closely meets the resize requirements and applies that to the VM.

For a given scope, you might want to make sure that the VMs never use certain tiers. For example, you might want to exclude tiers for cost or licensing reasons. You can add those tiers to this setting, and any VMs in the policy's scope will not use those for a resize.

NOTE:
In public cloud environments, both resize and move actions use tiers. This setting excludes the named templates for all of these actions. Turbonomic will not use an excluded tier for move or resize action. In addition, if you exclude a tier for a scope, but some workloads already use it, then Turbonomic will recommend moving the workload off of that excluded tier.

Analysis Policies: Database Servers

OPERATIONAL CONSTRAINTS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Target VCPU Utilization</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>For database servers on the public cloud, the target utilization as a percentage of VCPU capacity.</td>
</tr>
<tr>
<td></td>
<td>For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
</tr>
<tr>
<td>Scaling Target VMEM Utilization</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>For database servers on the public cloud, the target utilization as a percentage of memory capacity.</td>
</tr>
<tr>
<td></td>
<td>For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
</tr>
</tbody>
</table>
Working With Policies

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Time Capacity [ms]</td>
<td>10000</td>
</tr>
<tr>
<td>Transactions Capacity</td>
<td>20</td>
</tr>
<tr>
<td>Auto Set Transactions Capacity</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Transactions

This resource measures the number of transactions per second. Excess transactions indicate a heavy load on the application server, and usually means you should provision a new instance. You can set the transaction capacity, or direct Turbonomic to automatically set it.

- **Transaction Capacity**

 If you know the rate of transactions your applications can maintain, then you can set it here. The value that you set indicates when Turbonomic considers utilization to be 100%. The default value is 10 — If an application experiences 10 transactions per second or more, Turbonomic sets the utilization index for this resource to 100%.

- **Auto Set Transaction Capacity**

 If you enable this setting, Turbonomic adjusts the transaction capacity to the upper limit your application server experiences. For example, if the Transaction Capacity is set to 10, and the application server experiences 15 transactions per second, then the utilization of this resource would be 150%. However, if you enable Auto Set Transaction Capacity, then Turbonomic would increase the capacity to 15, and show utilization at 100%.

Response Time

Response time capacity determines the upper limit for acceptable response time in your applications, in milliseconds. Very high response time can be a result of excess load on the application. For excess response time, Turbonomic can recommend to provision another application instance.

SCALING CONSTRAINTS

- **Excluded Cloud Tiers**

 Use this setting to ensure that a scope of VMs only uses the cloud tiers you want.

 There are certain environments that use tiers to specify the resource allocations for a VM or other workload. Public cloud environments such as AWS or Azure use tiers, and some private cloud environments use them also.

 For example, assume you need to add memory to a VM. For VMs running on hypervisors, Turbonomic calculates the amount of memory to add, and can then use the hypervisor's API to add exactly that memory to the VM. In a cloud environment, Turbonomic chooses the cloud tier that most closely meets the resize requirements and applies that to the VM.

 For a given scope, you might want to make sure that the VMs never use certain tiers. For example, you might want to exclude tiers for cost or licensing reasons. You can add those tiers to this setting, and any VMs in the policy's scope will not use those for a resize.

 NOTE:

 In public cloud environments, both resize and move actions use tiers. This setting excludes the named templates for all of these actions. Turbonomic will not use an excluded tier for move or resize action. In addition, if you exclude a tier for a scope, but some workloads already use it, then Turbonomic will recommend moving the workload off of that excluded tier.
Analysis Policies: Disk Arrays

Default Settings

UTILIZATION CONSTRAINTS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Amount Utilization</td>
<td>90</td>
</tr>
</tbody>
</table>

STORAGE SETTINGS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPS Capacity</td>
<td>5000</td>
</tr>
<tr>
<td>A generic setting for disk array IOPS capacity (see Disk Array IOPS Capacity below).</td>
<td></td>
</tr>
<tr>
<td>VSeries LUN IOPS Capacity</td>
<td>5000</td>
</tr>
<tr>
<td>7.2k Disk IOPS Capacity</td>
<td>800</td>
</tr>
<tr>
<td>10k Disk IOPS Capacity</td>
<td>1200</td>
</tr>
<tr>
<td>15k Disk IOPS Capacity</td>
<td>1600</td>
</tr>
<tr>
<td>SSD Disk IOPS Capacity</td>
<td>50000</td>
</tr>
<tr>
<td>Disk Array IOPS Capacity</td>
<td>10000</td>
</tr>
<tr>
<td>Storage Overprovisioned Percentage</td>
<td>200</td>
</tr>
<tr>
<td>Storage Latency Capacity [ms]</td>
<td>100</td>
</tr>
</tbody>
</table>

Storage Provisioned

How much overprovisioning Turbonomic assumes when recommending actions for disk arrays. For example, if a disk array has a 30 TB capacity, and DiskArray Overprovisioned Percentage is set to 200, Turbonomic will treat the datastore as though it has a capacity of 60 TB, or 200% of the actual disk array capacity.

IOPS Capacity

The capacity of IOPS (IO operations per second) that your storage devices can support. Turbonomic considers these settings when calculating utilization percentage. For example, assume IOPS Capacity of 5000 for a disk array. If utilization on the array is 2500 IOPS, then the disk array is at 50% of capacity for that metric.

Note that the IOPS setting for an array will determine IOPS calculations for all the storage on that array. If you made different IOPS settings for individual datastores hosted by the array, Turbonomic ignores the datastore settings and uses the disk array settings.

- Various Disk IOPS Capacity settings (**SSD Disk IOPS, 7.2k Disk IOPS**, etc)
 - IOPS capacity settings for the different types of physical drives that are discovered on a disk array. If the storage controller exposes the types of disks in the array, Turbonomic uses multiples of these values to calculate the IOPS capacity of the disk array.
- **Disk Array IOPS Capacity**
Some disk arrays do not expose data for their individual disks — This is typical for flash arrays, or arrays that aggregate storage utilization across multiple tiers. Turbonomic uses this setting for the IOPS capacity of such disk arrays. Set it to the global scope to specify IOPS capacity for all disk arrays. To override this setting, set a disk array or group of disk arrays as the property scope, and then set the value you want for IOPS Capacity.

NOTE:
The user interface shows a disk array entity for any array that is discovered through a valid disk array or storage controller target. It also shows *placeholder* disk arrays for disk arrays that are not discovered through a configured target. For example, you might have disk arrays that Turbonomic does not natively support. Or you might have storage that is not hosted by any disk array. Such placeholder disk array entities appear with the string "DiskArray-" prefixed to their names. The user interface allows you to set IOPS Capacity to these placeholders, but those settings have no effect. To set IOPS Capacity for that storage, you must set it to the individual datastores.

Analysis Policies: Hosts

UTILIZATION CONSTRAINTS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Overprovisioned Percentage</td>
<td>1000</td>
</tr>
<tr>
<td>Net Throughput</td>
<td>50</td>
</tr>
<tr>
<td>Ready Queue Utilization</td>
<td>50</td>
</tr>
<tr>
<td>Memory Utilization</td>
<td>100</td>
</tr>
<tr>
<td>IO Throughput</td>
<td>50</td>
</tr>
<tr>
<td>CPU Overprovisioned Percentage</td>
<td>1000</td>
</tr>
<tr>
<td>CPU Utilization</td>
<td>100</td>
</tr>
<tr>
<td>Swapping Utilization</td>
<td>20</td>
</tr>
</tbody>
</table>

Utilization constraints affect the actions Turbonomic recommends as it manages your environment. Turbonomic recommends actions that avoid using these resources beyond the given settings. The values you set here specify what percentage of the existing capacity that Turbonomic will consider to be 100% of capacity. For example:

- Setting 50 for Net Throughput means that Turbonomic considers 50% utilization of that throughput to be 100% of capacity and 25% utilization to be 50% of capacity
- Setting 1000 for Memory Overprovisioned Percentage means that overprovisioning memory by 5 times the physical capacity shows up as 50% utilization of the Mem Overprovisioned capacity in Turbonomic
- Setting 100 for Memory Utilization means that Turbonomic capacity reflects the physical capacity for this resource

DESIRED STATE

Default Settings
The desired state for your environment is an n-dimensional sphere that encompasses the fittest conditions your environment can achieve. The multiple dimensions of this sphere are defined by the resource metrics in your environment. Metric dimensions include VMem, storage, CPU, etc. While the metrics on the devices in your environment can be any value, the desired state, this n-dimensional sphere, is the subset of metric values that assures the best performance while achieving the most efficient utilization of resources that is possible.

The Desired State settings define the center of the sphere as well as its diameter. This is a way for you to customize what Turbonomic considers to be the desired state.

Setting the center of the sphere chooses the priority for Turbonomic analysis. If you set the balance in favor of efficiency, Turbonomic tends to place more VMs on fewer physical hosts, and to give them storage capacity from fewer data stores. As a result, high utilization can have more impact on QoS. With a balance in favor of performance, Turbonomic tends to spread virtual loads across more physical devices. This can result in the provisioning of excess resources.

The diameter setting determines the range of deviation from the center that can encompass the desired state. If you specify a large diameter, Turbonomic will have more variation in the way it distributes workload across hosting devices.

As you move each slider, a tooltip displays the numerical value of the setting. **Center** indicates the percentage of resource utilization you want, within the range you specify as **Diameter**. For example, if you want utilization of 75%, plus or minus 10%, then you would set **Center** = 75 and **Diameter** = 20. Turbonomic recommends actions that tend toward this desired state much as possible, given the dependencies within the current environment.

NOTE:
The setting for Target Utilization can have an effect on plans that you run. If you disable provisioning and suspension for hosts and datastores, then you should always set **Center** and **Diameter** to their default values.

Analysis Policies: Logical Pools

Default Settings

STORAGE SETTINGS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPS Capacity</td>
<td>5000</td>
</tr>
<tr>
<td>Storage Overprovisioned Percentage</td>
<td>200</td>
</tr>
<tr>
<td>Storage Latency Capacity [ms]</td>
<td>100</td>
</tr>
</tbody>
</table>

LogicalPool Overprovisioned

How much overprovisioning Turbonomic assumes when recommending actions for logical pools. For example, if a pool has a 30 TB capacity, and LogicalPool Overprovisioned Percentage is set to 200, Turbonomic will treat the pool as though it has a capacity of 60 TB, or 200% of the actual pool capacity.
Analysis Policies: Storage Controllers

Default Settings

UTILIZATION CONSTRAINTS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Amount Utilization</td>
<td>90</td>
</tr>
<tr>
<td>CPU Utilization</td>
<td>100</td>
</tr>
</tbody>
</table>

STORAGE SETTINGS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPS Capacity</td>
<td>5000</td>
</tr>
<tr>
<td>Storage Latency Capacity [ms]</td>
<td>100</td>
</tr>
</tbody>
</table>

Analysis Policies: Storage

UTILIZATION CONSTRAINTS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Amount Utilization</td>
<td>90</td>
</tr>
<tr>
<td>IOPS Utilization</td>
<td>100</td>
</tr>
<tr>
<td>Latency Utilization</td>
<td>100</td>
</tr>
</tbody>
</table>

Utilization constraints affect the actions Turbonomic recommends as it manages your environment. Turbonomic recommends actions that avoid using these resources beyond the given settings. The values you set here specify what percentage of the existing capacity that Turbonomic will consider to be 100% of capacity. For example, setting 90 for Storage Amount Utilization means that Turbonomic considers 90% utilization of the physical storage to be 100% of capacity.

STORAGE SETTINGS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directories to Ignore</td>
<td>`.dvsData.*</td>
</tr>
</tbody>
</table>
Attribute Table

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files to Ignore</td>
<td>Empty String</td>
</tr>
<tr>
<td>Storage Latency Capacity [ms]</td>
<td>100</td>
</tr>
<tr>
<td>Storage Overprovisioned Percentage</td>
<td>200</td>
</tr>
<tr>
<td>IOPS Capacity</td>
<td>5000</td>
</tr>
</tbody>
</table>

Attribute Descriptions

- **Storage Overprovisioned Percentage**

 Storage Overprovisioned Percentage sets how much overprovisioning Turbonomic assumes when recommending actions for VM datastores. For example, if a datastore has a 30 GB capacity, and Storage Overprovisioned Percentage is set to 200, Turbonomic will treat the datastore as though it has a capacity of 60 GB, or 200% of the actual datastore capacity.

- **IOPS Capacity**

 IOPS Capacity is the IOPS setting for individual datastores. To set a specific capacity for one group of datastores, select that group as the property scope and override the global setting for that scope.

 Note that IOPS capacity for a disk array takes precedence — Datastores that are members of a disk array always have the IOPS capacity that is set to the disk array.

 Turbonomic considers these settings when calculating utilization percentage. For example, assume IOPS Capacity of 500 for datastores. If utilization on a datastore is 250 IOPS, then the datastore is at 50% of capacity for that metric.

- **Storage Latency Capacity**

 This sets the maximum storage latency to tolerate on a datastore, in ms. The default setting is 100 ms.

 Turbonomic measures the latency experienced by all VMs and hosts that access the datastore. Assume a default setting of 100 ms. If a datastore exhibits latency of 50 ms, then the Turbonomic will show latency utilization of 50%.

- **Wasted Storage Management**

 You can make settings to control how Turbonomic tracks and reports on wasted storage in your environment. Wasted storage is any disk space devoted to files that are not required for operations of the devices or applications in your environment. Wasted storage may indicate opportunities for you to free up disk space, and provide more storage capacity to running VMs and applications.

 NOTE:

 It’s possible that a single datastore can be managed by more than one instance of vCenter Server. Browsing over such a datastore can result in conflicting values for wasted storage in reports and in the Improve Overall Efficiency dashboard. You should not enable datastore browsing for a scope that includes such a datastore.

 If there are groups of datastores you don’t want to track for wasted storage, set the given scope and disable datastore browsing there. If you prefer not to use Turbonomic resources to track wasted storage, leave the global setting checked.

 The settings for *Directories to Ignore* and *Files to Ignore* specify directories and files that Turbonomic will not consider when looking for wasted data storage space. Separate items in these lists with the OR bar (“|”).

Scaling Constraints

- **Increment Constant for Storage Amount [GB]**

 How many GB to add or subtract when resizing the allocation for a datastore. The default is 1 GB.
Analysis Policies: Switches

Default Settings

UTILIZATION CONSTRAINTS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Net Throughput</td>
<td>70</td>
</tr>
</tbody>
</table>

Analysis Policies: VMs

OPERATIONAL CONSTRAINTS

Default Settings

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Target VCPU Utilization</td>
<td>70</td>
</tr>
<tr>
<td>For VMs on the public cloud, the target utilization as a percentage of VCPU capacity. For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
<td></td>
</tr>
<tr>
<td>Scaling Target VMEM Utilization</td>
<td>90</td>
</tr>
<tr>
<td>For VMs on the public cloud, the target utilization as a percentage of memory capacity. For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
<td></td>
</tr>
<tr>
<td>Scaling Target IO Throughput Utilization</td>
<td>90</td>
</tr>
<tr>
<td>For VMs on the public cloud, the target utilization as a percentage of IO throughput capacity. For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
<td></td>
</tr>
<tr>
<td>Scaling Target Net Throughput Utilization</td>
<td>90</td>
</tr>
</tbody>
</table>
Working With Policies

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>For VMs on the public cloud, the target utilization as a percentage of network throughput capacity. For the public cloud, an advanced setting to determine how much you would like a scope of workloads to utilize their resources. This is a fixed setting that overrides the way Turbonomic calculates the optimal utilization of resources. You should only change this setting after consulting with Technical Support.</td>
<td></td>
</tr>
<tr>
<td>VCPU Resize Max Threshold (in Cores)</td>
<td>62</td>
</tr>
<tr>
<td>Tuned Scaling Range Upper Limit:</td>
<td>Turbonomic uses this range to set up tuned scaling actions for the VM (see Virtual Machine Actions [on page 239]). For an overview of tuned scaling, see Tuned Scaling Action Settings [on page 241].</td>
</tr>
<tr>
<td>VCPU Resize Min Threshold (in Cores)</td>
<td>2</td>
</tr>
<tr>
<td>Tuned Scaling Range Lower Limit:</td>
<td>Turbonomic uses this range to set up tuned scaling actions for the VM (see Virtual Machine Actions [on page 239]). For an overview of tuned scaling, see Tuned Scaling Action Settings [on page 241].</td>
</tr>
<tr>
<td>VMEM Resize Max Threshold (MB)</td>
<td>131072</td>
</tr>
<tr>
<td>Tuned Scaling Range Upper Limit:</td>
<td>Turbonomic uses this range to set up tuned scaling actions for the VM (see Virtual Machine Actions [on page 239]). For an overview of tuned scaling, see Tuned Scaling Action Settings [on page 241].</td>
</tr>
<tr>
<td>VMEM Resize Min Threshold (MB)</td>
<td>512</td>
</tr>
<tr>
<td>Tuned Scaling Range Lower Limit:</td>
<td>Turbonomic uses this range to set up tuned scaling actions for the VM (see Virtual Machine Actions [on page 239]). For an overview of tuned scaling, see Tuned Scaling Action Settings [on page 241].</td>
</tr>
</tbody>
</table>

Utilization Constraints

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCPU Request Utilization</td>
<td>99.99</td>
</tr>
<tr>
<td>For Kubernetes pods, the percentage of the specified VCPU Request that the pod can utilize.</td>
<td></td>
</tr>
</tbody>
</table>
Scaling Constraints

Scaling constraints include settings that specify how Turbonomic takes actions to resize a VM. These settings include:

- **Resize Increments:**

 These increments specify how many units to add or subtract when resizing the given resource allocation for a VM. For example, it makes sense to change VMem by steps of 1024 MB at a time, but for VStorage it’s better to make changes by 0.5 GB steps.

 The following table shows the default settings for the Resize increments:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment constant for VMEM [MB]</td>
<td>1024</td>
</tr>
<tr>
<td>Increment constant for VCPU [MHz]</td>
<td>1800</td>
</tr>
<tr>
<td>Increment constant for VStorage [GB]</td>
<td>999999</td>
</tr>
</tbody>
</table>

 For resize increments, you should consider the following:

 - For VMem, you should not set the increment value to be lower than what is necessary for the VM to operate. If the VMem increment is too low, then it’s possible that Turbonomic would allocate insufficient VMem for the machine to operate. For a VM that is under utilized, Turbonomic will reduce VMem allocation by the increment amount, but it will not leave a VM with zero VMem. For example, if you set this to 1024, then Turbonomic cannot reduce the VMem to less than 1024 MB.

 - For VCPU, the increment affects resize of VCPU limits and reservations in MHz, and it also affects the addition/removal of cores for VCPU capacity on a VM.

 For limits and reservations, Turbonomic recommends changes in terms of the specified resize increment. For example, assume the increment is 1800 MHz and you have reserved 3000 MHz for a VM. Turbonomic could recommend to reduce the reservation by 1800, down to 1200 MHz.

 For VCPUs, Turbonomic can only resize allocation one core at a time. This means a resize is to the nearest core count that matches or exceeds the resize increment. Assume the cores all have a clock speed of 2000 MHz. If the resize increment is 1800 MHz, then a resize up will recommend to add one more core at 2000 MHz.

 - For VStorage, the default setting is very high to disable resize actions. This is usually preferred because VStorage resize requires that you reformat the storage.

- **Rate of Resize**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of Resize</td>
<td>2 (Medium)</td>
</tr>
</tbody>
</table>

 When resizing resources for a VM, Turbonomic calculates the optimal values for VMem, VCPU and VStorage. But it does not necessarily make a change to that value in one action. Turbonomic uses the Rate of Resize setting to determine how to make the change in a single action, as follows:

 - **Low**

 Change the value by one increment, only. For example, if the resize action calls for increasing VMem, and the increment is set at 1024, Turbonomic increases VMem by 1024 MB.

 - **Medium**
Change the value by an increment that is 1/4 of the difference between the current value and the optimal value. For example, if the current VMem is 2 GB and the optimal VMem is 10 GB, then Turbonomic will raise VMem to 4 GB (or as close to that as the increment constant will allow).

- **High**

 Change the value to be the optimal value. For example, if the current VMem is 2 GB and the optimal VMem is 8 GB, then Turbonomic will raise VMem to 8 GB (or as close to that as the increment constant will allow).

Aggressiveness

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressiveness</td>
<td>95th Percentile</td>
</tr>
</tbody>
</table>

Turbonomic uses Aggressiveness when evaluating:

- VCPU performance
- VMEM performance
- VM IOPS utilization (Azure VMs only)

When evaluating VCPU and VMEM performancem, Turbonomic considers resource utilization as a percentage of capacity. The utilization drives actions to scale the available capacity either up or down. To measure utilization, the analysis considers a given utilization percentile. For example, assume a 95th percentile. The percentile utilization is the highest value that 95% of the observed samples fall below. Compare that to average utilization, which is the average of all the observed samples.

Using a percentile, Turbonomic can recommend more relevant actions. This is important in the cloud, so that analysis can better exploit the elasticity of the cloud. For scheduled policies, the more relevant actions will tend to remain viable when their execution is put off to a later time.

For example, consider decisions to reduce the capacity for CPU on a VM. Without using a percentile, Turbonomic never resizes below the recognized peak utilization. For most VMs there are moments when peak CPU reaches high levels. Assume utilization for a VM peaked at 100% just once. Without the benefit of a percentile, Turbonomic will not reduce allocated CPU for that VM.

With **Aggressiveness**, instead of using the single highest utilization value, Turbonomic uses the percentile you set. For the above example, assume a single CPU burst to 100%, but for 95% of the samples CPU never exceeded 50%. If you set **Aggressiveness** to 95th Percentile, then Turbonomic can see this as an opportunity to reduce CPU allocation for the VM.

In summary, a percentile evaluates the sustained resource utilization, and ignores bursts that occurred for a small portion of the samples. You can think of this as aggressiveness of resizing, as follows:

- 100th Percentile – The least aggressive, recommended for critical workloads that need maximum guaranteed performance at all times.
- 95th Percentile (Default) – The recommended setting to achieve maximum performance and savings.
- 90th Percentile – The most aggressive, recommended for non-production workloads that can stand higher resource utilization.

Max Observation Period

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Observation Period</td>
<td>Last 30 Days</td>
</tr>
</tbody>
</table>
To refine the calculation of resource utilization percentiles, you can set the sample time to consider. Turbonomic uses historical data from up to the number of days that you specify as a sample period. (If the database has fewer days’ data then it uses all of the stored historical data.)

A shorter period means there are fewer data points to account for when Turbonomic calculates utilization percentiles. This results in more dynamic, elastic resizing, while a longer period results in more stable or less elastic resizing. You can make the following settings:

- Less Elastic – Last 90 Days
- Recommended – Last 30 Days
- More Elastic – Last 7 Days

\[\text{Min Observation Period} \]

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Observation Period</td>
<td>Last 0 Days</td>
</tr>
</tbody>
</table>

This default value of "Last 0 Days" reproduces the behavior of earlier versions that did not include this setting. However, the recommended setting is "Last 7 Days".

This setting ensures historical data for a minimum number of days before Turbonomic will generate an action based on the percentile set in **Aggressiveness**. This ensures a minimum set of data points before it generates the action.

Especially for scheduled actions, it is important that resize calculations use enough historical data to generate actions that will remain viable even during a scheduled maintenance window. A maintenance window is usually set for "down" time, when utilization is low. If analysis uses enough historical data for an action, then the action is more likely to remain viable during the maintenance window.

- Less Elastic – Last 0 Days
- Recommended – Last 7 Days
- More Elastic – Last 30 Days

\[\text{Excluded Cloud Tiers} \]

Use this setting to ensure that a scope of VMs only uses the cloud tiers you want.

There are certain environments that use tiers to specify the resource allocations for a VM or other workload. Public cloud environments such as AWS or Azure use tiers, and some private cloud environments use them also.

For example, assume you need to add memory to a VM. For VMs running on hypervisors, Turbonomic calculates the amount of memory to add, and can then use the hypervisor's API to add exactly that memory to the VM. In a cloud environment, Turbonomic chooses the cloud tier that most closely meets the resize requirements and applies that to the VM.

For a given scope, you might want to make sure that the VMs never use certain tiers. For example, you might want to exclude tiers for cost or licensing reasons. You can add those tiers to this setting, and any VMs in the policy's scope will not use those for a resize.

\[\text{NOTE:} \] In public cloud environments, both resize and move actions use tiers. This setting excludes the named templates for all of these actions. Turbonomic will not use an excluded tier for move or resize action. In addition, if you exclude a tier for a scope, but some workloads already use it, then Turbonomic will recommend moving the workload off of that excluded tier.
Working With Policies

• Instance Store Aware Scaling

For AWS environments:

The template for your workload determines whether the workload can use an instance store, and it determines the instance store capacity. As Turbonomic calculates a resize or move action, it can recommend a new template that does not support instance stores, or that does not provide the same instance store capacity.

To ensure that resize actions respect the instance store requirements for your workloads, turn on Instance Store Aware Scaling for a given VM or for a group of VMs. When you turn this on for a given scope of VMs, then as it calculates move and resize actions, Turbonomic will only consider templates that support instance stores. In addition, it will not move a workload to a template that provides less instance store capacity.

• Ignore NVMe Constraints

Turbonomic recognizes when a VM instance includes an NVMe driver. To respect NVMe constraints, it will not recommend a move or resize to an instance type that does not also include an NVMe driver. If you ignore NVMe constraints, then Turbonomic is free to resize or move the instance to a type that does not include an NVMe driver.

Policy Examples

Policies provide a way to affect Turbonomic analysis so that the recommended actions satisfy your requirements. These examples show some common requirements you can set up.

Scheduling VM Suspend Actions in the Public Cloud

To save money in the public cloud, Turbonomic can identify VMs for you to suspend. Assume the utilization on a VM falls below a minimum at regular times. In that case, you can schedule Turbonomic to suspend it during those times. In this way you can avoid paying for resources that are not in use. To enable these VM suspend actions, you must set up policies on the affected applications as well as the VMs that host those applications.

To schedule suspend actions for VMs on the cloud, you will create two Automation Policies that work together. These policies identify which applications can be suspended, and when the underlying VMs are not be utilized by their given applications. Briefly, the policies are:

• Applications Policy
 A policy to set the priorities of the applications to Normal. By default, applications have a priority of Mission Critical. For Turbonomic to suspend a VM, the hosted application must have a Normal priority.
 For general information about application policies, see Analysis Policies: Applications (on page 253).

• VM Policy
 A policy to automate Suspend and Start actions, and to set the Minimum Sustained Utilization for the given VMs. By default, Suspend and Start are disabled, so you must enable them in this policy.
 Minimum Sustained Utilization sets the percentage of VCPU utilization for a VM to indicate that the VM is no longer being utilized by the applications it hosts. To ensure that Turbonomic will suspend the VMs at the scheduled time, (when the applications are set to a Normal priority) you will give Minimum Sustained Utilization a high value – 90%.
 For general information about VM policies, see Analysis Policies: VMs (on page 266).

To create the Applications Automation Policy:

1. Create a new Automation Policy.
Working With Policies

Navigate to Settings > Policies and click New Automation Policy. For the policy type, choose Application. Give the policy a descriptive name.

2. Set the policy scope.

To set the policy scope, first create a group that contains the applications you want to control. Note that you must create the group – you cannot use any groups that have been discovered by Turbonomic. For information about creating groups, see Creating Groups (on page 206).

Once you have created the group, use it as the policy scope.

3. Set the application priority to Normal for this policy.

In the policy fly-out, expand the Application Priorities section and add a priority control. Then set it to Normal.

Note that you might later decide these applications really are critical. In that case, you can set their priority back to Mission Critical. When you do, Turbonomic recognizes the change of priority, and powers up any suspended VMs in that scope.

4. optionally, a schedule window for this policy.

In the policy fly-out, expand the Schedule section and add a schedule.

For some application groups, you might know that they are inactive during specific times. For example, the applications might always be inactive over the weekend, or for certain times during the day. In that case, you can define a schedule for the policy to set the applications to Normal during down times, and back to Mission Critical when you want to guarantee they are available. When the schedule sets that application priorities to Critical, Turbonomic actions will turn on any underlying VMs that have been suspended.

For more scheduling information, see Setting Policy Schedules (on page 230).

5. Save the policy.

To create the Virtual Machines Automation Policy:

1. Create a new Automation Policy.

Navigate to Settings > Policies and click New Automation Policy. For the policy type, choose Virtual Machine. Give the policy a descriptive name.

2. Set the policy scope.

The first step is to identify the scope of VMs you want to affect. You can use groups that Turbonomic discovers. For example, you can use a group of all the VMs in a given region or zone, or all the VMs for a given cloud target. You can also create your own group. To be more precise, you can create groups of VMs to match your application groups. Once you identify the group or groups you want, use your groups to set the policy scope.

3. Set the Minimum Sustained Utilization for these VMs.

In the policy fly-out, expand the Operational Constraints section and add Minimum Sustained Utilization. Specify a value of 90.

This setting gives a percentage of VCPU utilization for a VM that indicates whether the VM is being utilized by the applications it hosts. Note that a VM can show utilization of VCPU to maintain the Guest OS, even though the application it hosts is idle. For this use case we want to guarantee that Turbonomic will suspend the VMs that the time you scheduled in the Applications policy. To accomplish this, we set Minimum Sustained Utilization to 90%.

4. Set the action modes for the Suspend and Start actions.

You can set these actions to Automated or Manual. If you want to test these policies out before automating, set them to Manual and check your pending actions during the scheduled times. For information about these action settings, see Setting Action Modes (on page 102).
In the policy fly-out, expand the Action Automation section and add the following actions:

- **Suspend** – This enables Turbonomic to suspend any VM in scope if the application it hosts has a priority of Normal, and if the Minimum Sustained Utilization for the VM is below the percentage you have set.
- **Start** – This ensures Turbonomic will restart suspended VMs when the application policy makes a scheduled change to set application priorities back to Critical.

5. Save the policy.

After you make these two policies, Turbonomic will identify applications that do not consume resources during the scheduled window, and drive suspend actions on the underlying VMs. When the schedule window closes, Turbonomic will restart those VMs.

Fine Tune VM Resize Calculations for the Public Cloud

Turbonomic analysis generates resize actions to change allocated capacity so that it better meets demand. In public cloud environments, to resize a VM you actually move the VM to a different template. The list of templates that's available depends on the cloud account, and the given region or availability zone. When Turbonomic calculates a VM resize, it looks for the template that best matches the desired values and moves the VM to that template.

To calculate the new capacity for a resize, Turbonomic uses Resize Increments. To improve template selection, you can adjust the VCPU resize increment to better match the CPU offerings in the available templates.

The default resize increment for VCPU is 1800 MHz. To fine tune resizing, set this to a lower value. You can look at the templates in your accounts, and set this increment to the lowest common denominator among them.

Note that Resize Increment is a global setting for all VMs in your environment, both on-prem and on the public cloud. For more information, see Scaling Constraints (on page 268) in "Analysis Policies: VMs".

Identifying Wasted Storage on the Public Cloud

Full management of storage on the public cloud includes identifying wasted storage. Wasted storage is any disk space devoted to files that are not required for operations of the workloads in your cloud environment. It can indicate opportunities for you to free up disk space, and reduce your overall cloud costs.

To enable the management of wasted storage, create a policy for your cloud storage. Then under Storage Settings add the Disable Datastore Browsing setting, and then turn it off. Turbonomic disables datastore browsing by default, so you must add this setting to enable wasted storage management. You can also specify directories or files to ignore so that the datastore browsing does not consider these files to be wasted storage. For more information, see Storage Settings (on page 264).

To apply this policy to your cloud storage, you must set a scope to the policy. Turbonomic discovers groups of storage by cloud provider or cloud region. You can use these discovered groups to set the scope, or you can create your own groups of storage.
Turbonomic uses templates to describe new entities that it will deploy in your environment or in plans. The templates specify resource allocations for these entities. For example, you can run a plan that adds new VMs to a cluster. If you add ten copies of a template, then the plan places ten new VMs that match the resource allocation you have specified for the given template. For your cloud environment, you can see templates to match the instance types in your cloud accounts and subscriptions.

A VM template definition can include one or more images that Turbonomic uses to deploy the VM in your environment. The image identifies the actual deployment package, including a path to the physical files (for example an OVA).
The Template Catalog shows all of the templates that have been specified or discovered for your installation of Turbonomic. From this page, you can also create new templates and edit existing ones.

Creating Templates

Templates specify the resources for entities that Turbonomic can deploy in your environment, or in plans.

A VM template definition can include one or more images that Turbonomic uses to deploy the VM in your environment. The image identifies the actual deployment package, including a path to the physical files (for example an OVA).

Creating and Editing Templates

To create a new template, navigate to the Template Catalog and click NEW TEMPLATE. To edit a template, click the template's name. When you create a new template, the first step is to choose the entity type.

1. Navigate to the Settings Page.
2. Choose Templates.
3. Create or edit a template
 To create a new template, navigate to the Template Catalog and click NEW TEMPLATE. To edit a template, click the template's name.
4. If you’re creating a new template, choose the entity type.
5. Make the settings for your template.
 For each type of template, you set allocations for different resources. You can make templates of the following types:
 - Virtual Machine
• Host
• Storage
• Container

6. Make the settings for your template, and then save your changes.

 When the template window opens, it displays the most common resource settings. You can expand the settings to see the full collection for that template type.

7. Save your changes.

 After you have made your settings and named the template, click **CREATE** or **SAVE**.

VM Template Settings

A VM template describes the resource allocation that you want to provide for a type of VMs. When Turbonomic deploys the associated VM to your environment or in a plan, it uses these values to determine the size of the VM. Turbonomic uses the Size settings to calculate the best placement for a VM of this type.

A VM template can optionally include an image description. When Turbonomic uses the template to deploy a VM to your environment, it uses the image to access the actual bits that install as the VM instance.

VM Size

• **CPU**

 The virtual CPUs assigned to the VM. Specify the number of **Cores** and the **VCPU** clock speed – Turbonomic multiplies these values to calculate the host CPU resources it will allocate when placing the VM.

 The **Utilization** value sets the percentage of allocated CPU that the placed VM will consume. To ensure the host has left over resources for infrastructure tasks, you should assign less than 100%.

• **Memory**

 The amount of memory to allocate for the VM, in MB.

 The **Utilization** value sets the percentage of allocated memory that the placed VM will consume. To ensure the host has left over resources for infrastructure tasks, you should assign less than 100%.

 Note that you should never allocate less memory than is required for the VM's guest OS.

• **Storage**

 The storage resources to allocate for this VM.

 ◦ **disk/rdm** – If you choose **rdm**, then the VM can use VMware Raw Device Mapping for its storage.
 ◦ **IOPS** – The capacity for IO operations you give the VM for this datastore.
 ◦ **Size** – The amount of storage capacity, in GB.

 The **Utilization** value sets the percentage of allocated memory that the placed VM will consume. To ensure the storage has left over resources for infrastructure tasks, you should assign less than 100%.

 Note that you can allocate multiple datastores to the VM.

• **Network**

 The amount of the host’s network throughput to assign to the VM, in Mb/s.
• IO

The amount of throughput on the host’s IO bus to assign to the VM, in Mb/s

VM Image

To support VM deployment based on the template, you can specify one or more images. The image is the actual deployment package for that VM. To add images to the template, show the IMAGE tab, and click Add Image. Turbonomic displays a list of the datacenters that it has discovered. Choose from that list to add it to the template's images.

After you choose the datacenter or region, you then specify:

• For On-Prem Deployment – The path to the image files in that datacenter
• For Cloud Deployment – The name of the image for that cloud region

Host Template Settings

Host templates describe models of physical hosts that you can deploy in the on-prem datacenter. As part of capacity planning, you might want to see how to replace your current hosts with different models. To do that, you create templates to represent the hosts you want, and then use those templates when running hardware replacement plans.
The host template is a collection of these settings:

- **CPU**

 The processor for this host model. Note that CPU size and speed are not the only factors to determine processing power. To address this, you can specify the host CPU in the following ways:

 - **Select from Catalog**

 When you enable **Select from Catalog**, you can open up a catalog of CPU models that Turbonomic uses to map the model to an effective capacity for the CPU.

 - **Cores and CPU Speed**

 When you disable **Select from Catalog**, you can specify the number of **Cores** and the **CPU** clock speed – Turbonomic multiplies these values to calculate the host CPU resources.

- **Memory**

 The amount of memory to allocate for the VM, in MB.

- **Network**

 The host’s network throughput, in MB/s.

- **IO**

 The host’s IO bus throughput, in MB/s.

- **Price**

 If you know the price of the host model that you’re specifying for the template, you can enter it here. When running a plan, Turbonomic can use the price to calculate costs or savings when adding or removing host machines in an on-prem datacenter.

Selecting CPUs from the Catalog

CPU processor speed is not necessarily an effective indicator of CPU capacity. For example, processor architecture can make a slower CPU have a greater effective capacity. Newer models of machines can often have fewer cores or less clock speed, but still have a higher effective capacity. This can affect planning in two ways:

- When planning hardware replacement, the plan knows the template's effective capacity. This means the plan knows how to best place workloads on the new hardware.
- For already deployed hosts, Turbonomic discovers the effective capacity and uses that information when calculating workload placement.

To build the catalog of CPU capacity, Turbonomic uses the CINT2006 benchmark data from spec.org. When you set up the CPU for a host template, you can search this catalog for the processor you want, and set it to the template.

NOTE:

Turbonomic also uses the effective processor capacity when calculating workload placement in real-time. For more information, see [Effective CPU Capacity (on page 96)](#).
HCI Host Template Settings

HCI host templates describe models of physical hosts that support participation in a vSAN. Along with the host compute specifications, you also include specifications for storage capacity, redundancy (RAID level and failover), compression, and thin or thick provisioning of the storage. You can use these templates to plan for changes to your vSAN capacity.

The HCI Host template is a collection of these settings:

- **CPU**

 The processor for this host model. Note that CPU size and speed are not the only factors to determine processing power. To address this, you can specify the host CPU in the following ways:

 - **Select from Catalog**

 When you enable **Select from Catalog**, you can open up a catalog of CPU models that Turbonomic uses to map the model to an effective capacity for the CPU.
Templates: Resource Allocations for New Entities

- **Cores and CPU Speed**

 When you disable **Select from Catalog**, you can specify the number of **Cores** and the **CPU** clock speed – Turbonomic multiplies these values to calculate the host CPU resources.

- **Memory**
 The amount of memory to allocate for the VM, in MB.

- **Network**
 The host’s network throughput, in MB/s.

- **IO**
 The host’s IO bus throughput, in MB/s.

- **Storage**
 The capacity for this storage.
 - **IOPS** – The effective IOPS capacity.
 - **Size** – Raw storage capacity, in GB. A plan that uses this template will compute the effective storage capacity.

- **Redundancy**
 The redundancy method for this storage on the virtualized SAN. This combines the RAID level and the number of host failures to tolerate.

- **Compression**
 Whether to model a predicted compression ratio, and if you enable it, what the predicted compression ratio is. Give the value of the uncompressed amount divided by the compressed amount. A setting of 1 means no compression, and a setting of 2 means compression of 50% – compressing 2 MB to 1 MB is a ratio of 2:1, which equals 2.

- **Space Reservation**
 A percentage to specify the thin or thick provisioning of the storage, where 0% is fully thin provisioned, and 100% is fully thick provisioned.

- **Price**
 If you know the price of the host model that you’re specifying for the template, you can enter it here. When running a plan, Turbonomic can use the price to calculate costs or savings when adding or removing host machines in an on-prem datacenter.

Selecting CPUs from the Catalog

CPU processor speed is not necessarily an effective indicator of CPU capacity. For example, processor architecture can make a slower CPU have a greater effective capacity. Newer models of machines can often have fewer cores or less clock speed, but still have a higher effective capacity. This can affect planning in two ways:

- When planning hardware replacement, the plan knows the template's effective capacity. This means the plan knows how to best place workloads on the new hardware.
- For already deployed hosts, Turbonomic discovers the effective capacity and uses that information when calculating workload placement.

To build the catalog of CPU capacity, Turbonomic uses the CINT2006 benchmark data from spec.org. When you set up the CPU for a host template, you can search this catalog for the processor you want, and set it to the template.
NOTE:
Turbonomic also uses the effective processor capacity when calculating workload placement in real-time. For more information, see Effective CPU Capacity (on page 96).

Storage Template Settings

Storage templates describe models of storage that you can deploy in the on-prem datacenter. As part of capacity planning, you might want to see how to replace your current storage with different models. To do that, you create templates to represent the storage you want, and then use those templates when running hardware replacement plans.

The storage template is a collection of these settings:

- **Storage**
 The capacity for this storage.
 - **IOPS** – The capacity for IO operations on this storage.
 - **Size** – The amount of storage capacity, in GB.
- **Price**
If you know the price of the storage model that you're specifying for the template, you can enter it here. When running a plan, Turbonomic can use the price to calculate costs or savings when adding or removing storage in an on-prem datacenter.
Billing and Costs

As you work with Turbonomic, you can set up costs that Turbonomic uses in its calculations. This setup includes:

- **Reserved Instance Settings**
 To recommend placing workloads on Reserved Instances (RIs), Turbonomic uses the real pricing plans that are available to the targets public cloud accounts. Setting up an RI Purchase Profile adds even more detail to the pricing structure that Turbonomic uses in its calculations.

- **OS Migration Profiles**
 For Migrate to Cloud plans, Turbonomic calculates the best placement for workloads that you want to move onto the public cloud. The migration includes choosing the OS for each migrated VM. The OS Profile that you configure here configures the default for how to manage the OS choices in migration plans.

- **Hardware Costs**
 As it generates reports and plans, Turbonomic can show estimated savings and costs for changes in the hosts and storage in your environment. To calculate these values, Turbonomic uses the prices you set up for Hardware Costs.

- **Price Adjustment**
 Cloud service providers can offer their own price lists, including special costs for services or discounts for workloads. However, Turbonomic does not discover these adjustments. For example, to reflect any discounted prices in the Turbonomic display and in Turbonomic analysis, you must manually configure those discounts. In Turbonomic, you configure such discounts via **Price Adjustments** for specific billing groups in your cloud environment.
Billing and Costs

 RI Purchase Profile

To recommend placing workloads on Reserved Instances (RIs), Turbonomic uses the real pricing plans that are available to the target public cloud accounts. Setting up an RI Purchase Profile adds even more detail to the pricing structure that Turbonomic uses in its calculations.

The RI Purchase Profile determines the costs that Turbonomic will use for all RI decisions in your environment. As it sees opportunities to move workloads to an RI term, Turbonomic determines the costs based on the purchase profile, and includes the cost information in action descriptions. Turbonomic also uses this information to calculate projected changes in cost, and to calculate costs for plan results.

Note that the settings you make here globally affect all of your public cloud environment.

To set up the RI Purchase Profile, navigate to Settings > Billing and Costs, and display the RESERVED INSTANCE SETTINGS tab. Then make the settings for your purchase profile:

• OFFERING CLASS
 For AWS environments, choose the offering class that corresponds to the RI types that you typically use in your environment.

• TERM
 For AWS and Azure environments, choose the payment terms you contract for your RIs. TERM can be one of 1 Year or 3 Year. Typically, longer term payment plans cost less per year.

• PAYMENT
 The payment option that you prefer for your AWS RIs:
 ◦ All Upfront – You make full payment at the start of the RI term.
 ◦ Partial Upfront – You make a portion of the payment at the start of the term, with the remainder paid at an hourly rate.
 ◦ No Upfront – You pay for the RIs at an hourly rate, for the duration of the term.

When you are satisfied with your RI Purchase Profile settings, click APPLY SETTINGS. Or to reset the form, click RESET DEFAULTS.
OS Migration Profile

For Migrate to Cloud plans, Turbonomic calculates the best placement for workloads that you want to move onto the public cloud. The migration includes choosing the OS for each migrated VM. The OS Profile that you configure here configures the default for how to manage the OS choices in migration plans.

To set up the OS Profile that plans will use by default, navigate to Settings > Billing and Costs, and display the OS MIGRATION PROFILE tab. Then make the settings for your OS profile:

- **Match source OS to target OS**
 Turbonomic will match selected OS and license with target OS and license for cost, size and reservations.

- **BYOL (Bring your own license)**
 Turbonomic will match the selected OS to an unlicensed, compatible target, assuming that license fees will be paid to a third party.

- **Custom OS**
 Turbonomic will use the specified target OS and license for cost, size and reservations per source OS.

<table>
<thead>
<tr>
<th>SOURCE OS</th>
<th>TARGET OS</th>
<th>BYOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Linux</td>
<td></td>
</tr>
<tr>
<td>RHEL</td>
<td>RHEL</td>
<td></td>
</tr>
<tr>
<td>SLES</td>
<td>SLES</td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>Windows</td>
<td></td>
</tr>
</tbody>
</table>

The OS Migration Profile determines how Turbonomic will map the OS of each workload as it places that workload on the cloud destination. This includes how to choose VM templates that provide the OS you want, and whether to include the license cost in the Migrate to Cloud plan results. To configure an OS Migration Profile, choose from:

- **Match source OS to target OS**
 As you migrate workloads to the cloud, keep the same OS. As Turbonomic calculates placement for the migrated workloads, it will only use templates that provide the same OS that the workload already has. This is important if your workloads host applications that depend on a specific OS.

- **BYOL (Bring your own license)**
 The same as **Match source OS to target OS**, except the plan does not include OS licensing costs in any of the cost calculations for on-cloud placement.

- **Custom OS**
 For each of the listed OS types, map the migrated VM to the OS you choose. The OS types are:
 - Linux – Any open source distribution of Linux. For the migration, Turbonomic will choose templates that provide the Linux platform that the cloud service provider delivers as a free platform. Note that this is always BYOL, because it assumes a free OS license.
 - RHEL – Red Hat Enterprise Linux.
 - SLES – SUSE Linux Enterprise Server.
 - Windows – Microsoft Windows.

 For each mapping, enable or disable **BYOL (Bring Your Own License)**. When you enable this, Turbonomic assumes that you are paying for the OS license, and will not include the license cost in the plan results. If you do not enable BYOL, then Turbonomic gets the license cost from the service provider and includes that cost in the plan results.

When you are satisfied with your changes, click **APPLY SETTINGS**. Or to reset the form, click **RESET DEFAULTS**.
Billing and Costs

Hardware Costs

As it generates reports and plans, Turbonomic can show estimated savings and costs for changes in the hosts and storage in your environment. To calculate these values, Turbonomic uses the prices you set up for Hardware Costs.

Turbonomic uses the costs you set up here to estimate investments or savings for changes to hardware in your environment. For plans, if the plan uses templates and you have assigned prices to them, then Turbonomic uses those values. Otherwise, the plan uses the values that you set up here.

To specify Hardware Costs, navigate to Settings > Billing and Costs, and display the HARDWARE COSTS tab. Then make the settings for different hardware resources:

- **HOST HARDWARE COST**
 The cost for an average physical host machine in your environment.

- **COST OF CPU PER UNIT**
 The average cost of each CPU socket in your hosts.

- **COST OF MEMORY PER GB**
 The average cost of memory for your hosts, per GB.

- **COST OF STORAGE PER TB**
 The average cost of storage capacity for disk storage, per TB.

When you are satisfied with your changes, click APPLY SETTINGS. Or to reset the form, click RESET DEFAULTS.

Price Adjustments

Cloud service providers can offer their own price lists, including special costs for services or discounts for workloads. However, Turbonomic does not discover these adjustments. For example, to reflect any discounted prices in the Turbonomic display and in Turbonomic analysis, you must manually configure those discounts. In Turbonomic, you configure such discounts via Price Adjustments for specific billing groups in your cloud environment.

Turbonomic applies these price adjustments to:

- Costs for workload template families, including:
 - Compute
 - RI Compute

- Costs for services, including:
 - Azure Active Directory
 - Azure Stack
 - Bandwidth
 - VM Licenses
 - AWS CloudWatch
 - AWS DynamoDB
 - And others

Note that in AWS environments, Turbonomic does not apply any discounts or other price adjustments to Spot Compute costs.
The general steps to configure a price adjustment are:

- Create the price adjustment:
 - Specify the adjustment scope
 To do this, you choose which cloud service provider is giving you the adjustment, and then choose a billing group to set the scope of the adjustment.
 - Choose the Type
 The price adjustment can be a Discount or an Increase. In most cases you will specify discounts for the price adjustment. While this sets the type for the overall adjustment, you can override the type for specific line items.
 - Specify a Price Adjustment setting
 The Price Adjustment is the overall adjustment that your cloud service provider offers for the billing groups in your current scope. For example, AWS might offer you a 10% discount for a given account. For that billing group, you would specify a 10% Discount for the Price Adjustment setting.

- Specify Price Overrides
 While your service provider might offer a general price adjustment for the billing group you chose, it might also offer further discounts for select services or template families. Or it might offer discounts for some template families, but price increases for some other services. You can configure these differences as Price Overrides.

NOTE:
Turbonomic uses the adjustments that you configure to display costs in the user interface. However, the values for hourly cost per entity, total hourly cost, total monthly cost, or total yearly cost can show inaccuracies on the order of a fraction of a percent. This is due to rounding when calculating the adjusted cost per entity.

Creating a Price Adjustment

A price adjustment configures adjusted workload pricing that you have negotiated with your Cloud Provider. After you configure an adjustment, Turbonomic applies it to pricing in the affected cloud scope.

To create a price adjustment in Turbonomic, you identify the adjustment's scope – the subscriptions or billing families the adjustment applies to – and then set the type and percentage for the price adjustment. This specifies an overall adjustment for the workloads that fall within the billing group. You can later drill into the adjustment to specify overrides for specific template families or services.

Notes:

- To use a price adjustment with a given billing group, you must increase the memory allocated to the VM that hosts your Turbonomic instance. The *Turbonomic Installation Guide* recommends that you provide a minimum of 16 GB when you install the product. To use price adjustments, Turbonomic recommends that you increase the allocated memory as follows:
 - For the first price adjustment assigned to one or more billing groups, increase by 4 GB.
 - For each subsequent price adjustment assigned to one or more billing groups, increase by an additional 1 GB.
- Whenever you add, edit, or remove a Price Adjustment that is in use, you must allow sufficient time for Turbonomic to fully discover all of the affected environment, and to propagate the changes throughout that environment. In an average environment, this can take up to 30 minutes. As an alternative, you can manually execute rediscovery for the affected cloud subscription or account.
To create a price adjustment:

1. Navigate to the Settings Page.

![Settings](image)

Click to navigate to the Settings Page. From there, you can perform a variety of configuration tasks.

2. Choose Billing and Costs.

![Billing and Costs](image)

Click to navigate to the Billing and Costs page.

3. Display the PRICE ADJUSTMENT tab.

Click the **PRICE ADJUSTMENT** tab to see all of the adjustments that have been configured for your environment. In this list you can:

- Click an entry to see details and edit the adjustment
- Select an entry to delete the adjustment
- Create new price adjustments

4. Create the price adjustment.

![New Price Adjustment](image)

First click **NEW PRICE ADJUSTMENT**, then specify the following settings to configure a price adjustment:

- Give the adjustment a name.
- To set the scope for this adjustment, choose its Billing Groups.

 Click in the **BILLING GROUPS** field to display the Billing Groups fly-out.

 In the Billing Groups fly-out, choose the cloud service provider you want to work with and then choose the billing group for the scope of this adjustment.
A Billing Group is a set of cloud service provider accounts that are consolidated into a single billing schedule. Billing group details depend on your service provider:

- Azure: For Azure environments, Turbonomic lists each Azure subscription as a billing group.
- AWS: To consolidate billing, AWS supports billing families of AWS accounts, where there is a *master* account and other *member* accounts. Turbonomic lists each billing family as a billing group. You can choose a billing family to set the scope of this adjustment.

After you have chosen your billing group, click **SAVE** to return to the Add New Price Adjustment fly-out.

- Set the Type for this price adjustment – Choose either **Discount** or **Increase**.
- Specify a percentage of adjustment as the Price Adjustment.

Enter the percentage in the **PRICE ADJUSTMENT** field. The acceptable value depends on the type of adjustment:

- For a discount: 0 - 99.99%
- For an increase: 0 - 999.99%

This is the general percentage of adjustment (increase or discount) for the current scope. For any costs within the adjustment scope, Turbonomic will apply this percentage as it calculates the optimal workload capacity and placement.

NOTE:
If you set an overall adjustment of 0%, then Turbonomic enforces a Type setting of Discount. The end result is the same, because an increase or a discount of 0% is the same.

5. Specify any price overrides for this price adjustment.
Billing and Costs

The PRICE ADJUSTMENT percentage you just specified applies as a default in the adjustment scope. However, you might have negotiated different prices for specific services or template families in your cloud environment. To configure these special prices, click PRICE OVERRIDES to open the Cloud Cost Adjustment fly-out. The overrides you can specify depend on the cloud service provider that manages the discount scope you have set:

- Azure – See Price Override: Azure (on page 290)
- AWS – See Price Override: AWS (on page 292)

6. Save your work.

After you have configured the price adjustment, click SAVE.

Price Override: Azure

To override the PRICE ADJUSTMENT setting for Azure billing groups, Turbonomic analysis can use settings for different services that Azure provides to subscriptions.

Assume your price adjustment specifies a discount of 10% for an Azure subscription. But then assume the subscription includes extra discounts for some of the services the subscription provides. Then you can create overrides to add the
extra discounts for those services. For more information about Azure subscriptions and cost calculations, see Azure Enterprise Agreements (on page 204).

In the Cloud Cost Adjustment table, you can perform the following:

- **Override the price adjustment for a service or template family.**

 To add an override, choose the line item for a service, or expand the row for a template family and:

 - Set the Type. Double-click and then choose **Discount** or **Increase**. Press **Enter** to confirm your setting.
 - Specify the percentage for this override, and then press **Enter** to confirm your override. The value you enter here is an absolute value for the discount or increase Turbonomic will apply for this line item.

 When you're done setting these overrides, click **Save**.

- **To remove all overrides and revert back to the PRICE ADJUSTMENT Discount**, click **CLEAR ALL OVERRIDES**.

- **To download a report of the discounts for each service**, click **DOWNLOAD** and choose CSV or PDF.

The table lists the following information about your discounts:

- **SERVICES**
 The different cloud services to which you can set an override discount. To see individual workload templates:

 - For Azure, expand **Virtual Machines**
 - For AWS, expand **AWS EC2 Compute** or **EC2 Reserved Instance**

- **TYPE**
 Whether this price adjustment will be an increase or a discount. By default, this field shows the setting that you have made for the Price Adjustment. However, you can change it as an override for an individual entry.

- **PRICE ADJUSTMENT %**
 The percentage that you have specified for the Price Adjustment setting. This is the general adjustment that Turbonomic applies by default to the given service.

- **OVERRIDE %**
 If you have entered a value, this is the price adjustment Turbonomic applies to the given service.

- **ORIGINAL RATE (LINUX)**
 The Cloud Service Provider's cost for VM templates, per hour. To see these costs, expand the workload services to show specific templates. The cost assumes no charge for the OS license, as though the VM runs Linux.

- **EFFECTIVE ADJUSTMENT %**
 The actual adjustment for the given service.

- **ADJUSTED RATE (LINUX)**
 The discounted cost for VM templates, per hour. To see these costs, expand **Virtual Machines** to show specific templates. The cost assumes no charge for the OS license, as though the VM runs Linux.
To override the PRICE ADJUSTMENT setting for AWS billing groups, Turbonomic analysis can use settings for different services that AWS provides to your accounts.

In AWS, you can set up a billing family that includes a master account and a given set of member accounts. Turbonomic treats the AWS billing family as a Billing Group. For more information about billing families and accounts, see AWS Billing Families (on page 202).

Assume you have configured a price adjustment with a discount of 10% for a billing family, to match the overall discount that AWS offers you for that scope. But then assume the account includes extra discounts for some of the services your billing families provide. Then you can create overrides to add the extra discounts to those services.

Turbonomic uses the adjusted costs in its analysis as it calculates actions. For example, assume a price adjustment of 10% for a billing group, and a discount of 20% for the M4.Large family of templates. As Turbonomic places a workload, it will consider both the template capacity and the template cost. Even if an M4 template is larger than the workload actually needs, the M4 template could be less expensive because of the added discount. In that case, Turbonomic will place the workload on the less expensive template.

NOTE:
The Cloud Cost Adjustment table lists the services that are available to you for the AWS billing family that you have set up as the discount scope. The services this table displays depend on whether the billing family uses the given service, and whether there is any recorded cost at the time that you display the table. For this reason, under some circumstances you might see different services listed in the table.

Under all circumstances, the table lists the services, AWS EC2 Compute, AWS EC2 Reserved Instance, and AWS RDS. Also, for the Cloud Cost Adjustment table to display CSP Cost and Effective Cost, you must have created a Cost and Usage report in AWS, and you must store it in an S3 bucket.

For more information, see Displaying AWS Spend In Turbonomic.

In the Cloud Cost Adjustment table, you can perform the following:

- Override the price adjustment for a service or template family.

 To add an override, choose the line item for a service, or expand the row for a template family and:

 - Set the Type. Double-click and then choose **Discount** or **Increase**. Press **Enter** to confirm your setting.
Specify the percentage for this override, and then press Enter to confirm your override. The value you enter here is an absolute value for the discount or increase Turbonomic will apply for this line item. When you’re done setting these overrides, click Save.

- To remove all overrides and revert back to the PRICE ADJUSTMENT Discount, click CLEAR ALL OVERRIDES.
- To download a report of the discounts for each service, click DOWNLOAD and choose CSV or PDF.

The table lists the following information about your discounts:

- **SERVICES**
 The different cloud services to which you can set an override discount. To see individual workload templates:
 - For Azure, expand Virtual Machines
 - For AWS, expand AWS EC2 Compute or EC2 Reserved Instance

- **TYPE**
 Whether this price adjustment will be an increase or a discount. By default, this field shows the setting that you have made for the Price Adjustment. However, you can change it as an override for an individual entry.

- **PRICE ADJUSTMENT %**
 The percentage that you have specified for the Price Adjustment setting. This is the general adjustment that Turbonomic applies by default to the given service.

- **OVERRIDE %**
 If you have entered a value, this is the price adjustment Turbonomic applies to the given service.

- **ORIGINAL RATE (LINUX)**
 The Cloud Service Provider's cost for VM templates, per hour. To see these costs, expand the workload services to show specific templates. The cost assumes no charge for the OS license, as though the VM runs Linux.

- **EFFECTIVE ADJUSTMENT %**
 The actual adjustment for the given service.

- **ADJUSTED RATE (LINUX)**
 The discounted cost for VM templates, per hour. To see these costs, expand Virtual Machines to show specific templates. The cost assumes no charge for the OS license, as though the VM runs Linux.
Administrative Tasks

To perform Turbonomic administrative tasks, you will navigate to different pages from **Settings**. The different tasks you can perform for Turbonomic include:

- **Managing User Accounts** ([on page 294](#))
 Create and manage user accounts for Turbonomic.
- **Viewing the Update page** ([on page 304](#))
 See information about your current version.
- **License Configuration** ([on page 305](#))
 Review the status of your current license, and apply any license upgrades.

Managing User Accounts

As an administrator, you specify accounts that grant users specific access to Turbonomic. User accounts determine the following for a given user login:

- **User Authentication**
 To configure an account, you set the type of authentication the account will use:
 - Local User – Configure the username and password and save those credentials on the Turbonomic server.
 - External User – Single user accounts that authenticate through Single Sign-on (SSO) or through Microsoft Active Directory (AD).
 - External Group – User group accounts that authenticate through SSO or AD.

- **User Authorization**
 Properties that determine the range of access and features for a given user:
 - Role – Access to specific Turbonomic features
 - Scope – How much of the environment this user can manage

As you configure user accounts, you can set up access to specific clusters in your environment. You can even set up accounts for tenant customers, and only show them the virtual workloads they own in their specific virtual datacenters.
IMPORTANT:
You can configure Turbonomic to use SSO authentication. When SSO is enabled, Turbonomic only permits logins via the SSO IdP. Whenever you navigate to your Turbonomic installation, it redirects you to the SSO Identity Provider (IdP) for authentication before displaying the Turbonomic user interface.

Before you enable SSO for your Turbonomic installation, **you must configure at least one SSO user with Turbonomic administrator privileges**. If you do not, then once you enable SSO you will not be able to configure any SSO users in Turbonomic. To authorize an SSO user as an administrator, use **EXTERNAL AUTHENTICATION** to do one of the following:

- Configure a single SSO user with administrator authorization.
 - Add an external user. The username must match an account that is managed by the IdP.
- Configure an SSO user group with administrator authorization.
 - Add an external group. The group name must match a user group on the IdP, and that group must have at least one member.

For information about configuring SSO user groups in SAML, see Configuring a Group for SSO Authentication (on page 301). For information about configuring SSO authentication for Turbonomic, see "Single Sign-On Authentication" in the Turbonomic Installation Guide.

To work with Turbonomic accounts:

1. Navigate to the Settings Page.

 ![Settings Page](image)

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. Choose User Management.

 ![User Management Page](image)

 Click to navigate to the User Management Page.
This page lists all the user accounts that you currently have configured for Turbonomic. You can:

- Click to manage LOCAL USERS or EXTERNAL AUTHENTICATION
- Select an entry to delete the account
- Click a name to edit the account
- Create new user or group account
- Configure Active Directory settings

3. Filter the list of users.

To work with a long list of users, you can filter by role (for example, only show administrator or only show observer users). You can also type a string in the **Search** field to filter the list, and you can sort the list by name.

4. Work with Local user accounts.

Turbonomic stores local accounts and their credentials on the Turbonomic platform. Local authentication is for individual users, only.

When you choose **LOCAL USERS**, Turbonomic displays a list of all the local user accounts you have configured for this installation.

5. Create or edit a local user account.
To add a new local user, click **NEW LOCAL USER**. To edit an existing account, click the account name in the list. To configure a local account, specify:

- **Authentication:**

 Provide the username and password. Turbonomic stores these credentials on the local server.

- **Authorization – User Role:**

 - **Administrator**

 Can use all Turbonomic features, and can modify settings to configure the Turbonomic installation.

 - **Site Administrator**

 Can use all Turbonomic features, and can modify site-specific settings to configure the Turbonomic installation. Can administer Groups, Policies, Templates, Billing/Costs, Users (cannot create users with Administrator role), Target Configuration, but cannot administer Email, Licenses, Updates, and Maintenance.

 - **Automator**

 Can use all of the Turbonomic features including Plan and Place, but cannot configure the Turbonomic installation or create policies.

 - **Deployer**

 Can view all Turbonomic charts and data, can use Place to reserve workloads, and can create policies and templates. However, this role cannot run plans or execute any recommended actions.
Administrative Tasks

- **Advisor**
 Can view all Turbonomic charts and data, and can run plans, but cannot use Place to reserve workloads, or execute any recommended actions.

- **Observer**
 Can view the environment, including the Dashboards: Focused Views and Dashboards. Can also use Search to set a scope to the session.

- **Shared Advisor**
 A scoped user. Can only see VMs and Applications, and cannot execute Turbonomic actions. Can view the Dashboards: Focused Views and Dashboards, and can run plans.

- **Shared Observer**
 A scoped user. Can only see VMs and Applications, and cannot execute Turbonomic actions. Can view the Dashboards: Focused Views and Dashboards. This is the most restricted user.

- **Authorization – Scope (optional)**
 The scope limits what the user can monitor. For example, you can scope to a group that contains only the physical machines that support this user’s VMs or applications. Click **ADD SCOPE** and choose which groups or clusters this user can see.

 NOTE:
 Under most circumstances, a scoped user cannot see actions for entities that are outside of the configured scope. However, when zooming in to Host entities, the user can see actions for storage that is outside of the user's scope if the hosts use that storage.

6. Work with **EXTERNAL AUTHENTICATION** to set up SSO or AD accounts.

For External Authentication, you configure Turbonomic to use SSO or AD services to manage the credentials and authentication of users. You can create external accounts to authorize user groups or individual users.

NOTE:
If a user is a member of multiple groups, then Turbonomic logs the user on via the first SSO or AD group that successfully authenticates the user. Also note that Turbonomic does not support nested AD groups – AD logins must be for users in a top-level group.

To enable SSO, you must configure access to the given IdP. For information about configuring SSO, see "Single Sign-On Authentication" in the *Turbonomic Installation Guide*.
To enable AD you must specify either an AD domain, an AD server, or both. Turbonomic uses this connection for all AD users.

7. Enable AD authentication.

To enable AD, click **CONNECT TO AD** and configure:

- **Active Directory Domain** – To authenticate AD groups, specify a domain so that AD can find a given user via the User Principal Name (UPN). If you specify a domain, but not a server, authentication uses any AD server from that domain.
- **Active Directory Server** – To disable AD groups, specify a server but do not specify a domain. If you specify a domain and a server, authentication will use that server, and will also support groups.

When you configure an AD server, by default Turbonomic assumes the AD server port to be 389 or 636. To specify a custom port for the AD server, add the port number to the AD server IP address. For example, `10.10.10.123:444` sets port 444.

- **Secure** – Use a secure connection when communicating with AD servers. Note that the AD domain must be configured to use LDAPS, and you must have imported a certificate into the Turbonomic server. For more information, see "Enforcing Secure Access" in the Turbonomic Installation Guide.

8. Create or edit an SSO or AD account.
This account can be for a user group or for a single user. To add a new account, click **NEW EXTERNAL GROUP** or **NEW EXTERNAL USER**. To edit an existing account, click the account name. To configure an external account, specify:

- **Authentication**:
 Provide the group or user name for this account. The name you provide must meet certain requirements, depending on the type of account you are creating:
 - **SSO Group** – Provide a name that matches a group the IdP manages.
 - **AD Group** – The group name must match a group that is accessible from the domain and servers that you configured in **EDIT AD**.
 - **SSO User** – Provide a user name that matches a user managed by the IdP.
 - **AD User** – The username must be a valid User Principal Name (UPN). For example, john@corp.mycompany.com.

- **Authorization – User Role**:
 - **Administrator**
 Can use all Turbonomic features, and can modify settings to configure the Turbonomic installation.
 - **Site Administrator**
 Can use all Turbonomic features, and can modify site-specific settings to configure the Turbonomic installation. Can administer Groups, Policies, Templates, Billing/Costs, Users (cannot create users with Administrator role), Target Configuration, but cannot administer Email, Licenses, Updates, and Maintenance.
 - **Automator**
 Can use all of the Turbonomic features including Plan and Place, but cannot configure the Turbonomic installation or create policies.
Administrative Tasks

- **Deployer**
 Can view all Turbonomic charts and data, can use Place to reserve workloads, and can create policies and templates. However, this role cannot run plans or execute any recommended actions.

- **Advisor**
 Can view all Turbonomic charts and data, and can run plans, but cannot use Place to reserve workloads, or execute any recommended actions.

- **Observer**
 Can view the environment, including the Dashboards: Focused Views and Dashboards. Can also use Search to set a scope to the session.

- **Shared Advisor**
 A scoped user. Can only see VMs and Applications, and cannot execute Turbonomic actions. Can view the Dashboards: Focused Views and Dashboards, and can run plans.

- **Shared Observer**
 A scoped user. Can only see VMs and Applications, and cannot execute Turbonomic actions. Can view the Dashboards: Focused Views and Dashboards. This is the most restricted user.

- **Authorization – Scope (optional)**
 The scope limits what members of this group can monitor. For example, you can scope for access to only the hosts that support this group’s VMs or applications. Click **DEFINE SCOPE** and choose which entities this members of this group can see.

Configuring a Group for SSO Authentication

To use SSO authentication in Turbonomic, you should configure user groups on the IdP. The IdP can authenticate the group members, and then Turbonomic can assign the user role and scope according to that group’s authentication. To manage personnel changes, you only need to manage the membership in the IdP group. For example, if a user leaves your organization, you only need to remove the member from the group on the IdP. Because authorization on Turbonomic is by group, that user will not have any authorization settings stored on the Turbonomic server.

IMPORTANT:
Before you enable SSO for your Turbonomic installation, you **must configure at least one SSO user with Turbonomic administrator privileges**. If you do not, then once you enable SSO you will not be able to configure any SSO users in Turbonomic. To authorize an SSO user as an administrator, use **EXTERNAL AUTHENTICATION** to do one of the following:

- Configure a single SSO user with administrator authorization.
 Add an external user. The username must match an account that is managed by the IdP.

- Configure an SSO user group with administrator authorization.
 Add an external group. The group name must match a user group on the IdP, and that group must have at least one member.

For more information about configuring SSO authentication, see “Single Sign-On Authentication” in the *Turbonomic Installation Guide*.
Specifying a Group in the SAML Response

To support SSO, Turbonomic recognizes IdP responses that comply with SAML 2.0. To create user groups, for each user response you include an attribute named group, and give the group name as the attribute value. For example, assuming the following users, setting the group attribute for each user assigns that user to the appropriate group.

<table>
<thead>
<tr>
<th>Users</th>
<th>Group Attribute:</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>Attribute Name=group, AttributeValue=Beatles</td>
</tr>
<tr>
<td>Paul</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td></td>
</tr>
<tr>
<td>Ringo</td>
<td></td>
</tr>
<tr>
<td>Smokey</td>
<td>Attribute Name=group, AttributeValue=Miracles</td>
</tr>
<tr>
<td>Pete</td>
<td></td>
</tr>
<tr>
<td>Ronnie</td>
<td></td>
</tr>
<tr>
<td>Claudette</td>
<td></td>
</tr>
<tr>
<td>Bobby</td>
<td></td>
</tr>
<tr>
<td>Marv</td>
<td></td>
</tr>
</tbody>
</table>

As you specify the user response, to add the user to a group you include a group attribute. For example, to add a user to a group named turbo_admin_group, you would include the following attribute in that user’s SAML response:

```xml
<saml2:Attribute
  Name="group"
  NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
  <saml2:AttributeValue
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:type="xs:string">
    turbo_admin_group
  </saml2:AttributeValue>
</saml2:Attribute>
```

Setting Group Authorization in Turbonomic

To set an account role and scope to a user group, you must use the group name that you specify as the value in the given SAML group attribute. In the above example, the group value is turbo_admin_group. To set authorization for that group:

1. Open the User Management page to EXTERNAL AUTHENTICATION.

 Navigate to Settings > User Management, and display the EXTERNAL AUTHENTICATION view.

2. Create a new External Group

 Click NEW EXTERNAL GROUP.

3. Provide the group name.

 Be sure to use the name that you specify in the group attribute of the SAML response. For the above example, use the name turbo_admin_group.

4. Specify the group’s authorization
For the above example, since this is `turbo_admin_group`, you should set the **ADMINISTRATOR** role, and you should not set any scope (grant full access to the environment).

After you configure this group in Turbonomic, then any member of `turbo_admin_group` that the IdP returns will have full administrator privileges on your Turbonomic installation.

Maintenance: Logging and Troubleshooting

The Maintenance Options Page provides tools to set logging levels and to export data for technical support, and import diagnostic files from Technical Support. Many of these tools are for advanced users. You should contact Turbonomic technical support before you use them.

To execute these actions, navigate to the Maintenance Options page:

1. Navigate to the Settings Page.

2. Choose Maintenance Options.

Data Retention

<table>
<thead>
<tr>
<th>Data Retention</th>
<th>Saved Audit Log Entries</th>
<th>Daily Saved Statistics</th>
<th>Hourly Saved Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>365</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>Months</td>
<td>24</td>
<td>14</td>
<td>30</td>
</tr>
</tbody>
</table>

Turbonomic gathers metrics from your environment to provide historical reports. To optimize data storage, it consolidates the data into three groups - Hourly, Daily, and Monthly. Daily statistics consolidate Hourly data, and Monthly statistics consolidate Daily data. Turbonomic also saves plans, reports, and audit log entries.

You can always modify the default values to meet your requirements. Remember that the longer the retention period, the more storage is required.
Administrative Tasks

HTTP Proxy

If your environment requires an HTTP proxy for Turbonomic to access the web, provide the credentials here.

Diagnostics

If you are experiencing problems with Turbonomic, your support engineer might request that you export diagnostic data. You can export the data and then send it to the support engineer as requested.

Logging Levels

You can set the level of logging for different components of the Turbonomic platform. You should be aware that setting more verbose logging levels increases the disk space required to store the log files. You normally change these settings only while you’re working with a Turbonomic support engineer.

The Updates Page

Use the Updates page to get information about your Turbonomic version.

The ABOUT button shows the current version and build of your Turbonomic installation. It also lists the platform components by name and version.

NOTE:
For complete update instructions, see the Installation Guide.

To navigate to the Updates page:

1. Navigate to the Settings Page.

 Click to navigate to the Settings Page.
2. Choose Updates.

License Configuration

To activate the full range of Turbonomic features, you must purchase the appropriate license. When you purchase the license, Turbonomic sends the license file to you in an e-mail message.

NOTE:
Starting with Turbonomic version 6.0, the basis for a license is the number of workloads that license supports. Earlier versions based their licenses on the number of sockets to support.

If you upgrade your Turbonomic product to version 6.1, you can still use your existing socket-based license to support the same environment. Turbonomic will continue to manage and control your workloads in that environment.

If you want to upgrade your license to support a larger environment, you must:

• Contact your sales representative to get the new license
 This license will be workload-based. Your sales representative will work with you to ensure that your new capacity equals your current capacity, plus the capacity you want to add on.

• Install the new license or licenses
 To install the new workload-based license, you must first delete the old socket-based license. Then you can install your new workload-based license.

In all circumstances, you should contact your sales representative to make sure that you get the correct license, and that you know how to install it properly.
A product license enables specific features as well as a specific number of workloads that you can manage. You can add additional licenses to Turbonomic as a way to increase the number of workloads you installation can manage. Note that as you add more licenses, they must all support the same feature set.

The License Configuration page shows you:

- The number of active workloads you can manage under this license
- How many workloads are currently active
- The set of features this license enables
- A list of current, active licenses

To navigate to the License Configuration page:

1. Navigate to the Settings Page.

2. Choose License.

To activate a license or to update your current license:

1. Obtain your license.

 Turbonomic sends the license file to you in an e-mail message. Save the license file on your local machine so you can upload it to your Turbonomic installation.

2. Apply the license to your Turbonomic installation.

 First click IMPORT LICENSE. Then browse to the license file that you saved and open it. Or you can drag the file into the Enter License fly-out.

 After you have uploaded the file, click SAVE.

After you have activated your license, you can then add more licenses to increase your workload coverage, or you can license a higher feature set.

NOTE:

As you apply new licenses to Turbonomic, you must be sure that they are for the same edition or feature set. If you try to apply an incompatible license file, Turbonomic displays an Invalid Feature Set error. To apply the new license you must either delete your current license so you can install the new feature set, or you must obtain a different license file that matches your current feature set.

After you install a new license, it is a good idea to clear your browser cache.

To increase your licensed workload coverage:

1. Obtain your additional license.

 Note that your additional licenses must match the feature set of your current license.

2. Apply the license to your Turbonomic installation.

To upgrade your license to a higher feature set:

1. Obtain your new license for the new features.

 You should obtain a license that supports at least the same number of workloads as your current license.
2. Delete your current license from Turbonomic.
 On the license page, select all the licenses that you currently have installed, then click **DELETE**.
3. Apply the license to your Turbonomic installation.

Email Notifications

Turbonomic is designed to manage your environment in real time. If conditions arise in your environment that prevent Turbonomic from collecting the data it needs, or from executing control actions on the entities in your environment, then it posts notifications to the user interface to alert you to such problems. If Turbonomic control is especially critical for certain scopes in your environment, you can set up email notifications to alert you to any issues that arise within those scopes.

Email notifications can alert personnel to specific situations that require attention. For example, you can set up a notification to your email address whenever there’s a discovery problem within a specific scope of hosts.

The **Email Settings** set up your SMTP relay, declare a "From" address for emails from Turbonomic, and set up the formats of notification emails.

Email Settings

The first step for preparing email notifications is to configure email handling in Turbonomic.

1. Navigate to the Settings Page.

 ![Settings](image)

 Click to navigate to the Settings Page. From there, you can perform a variety of Turbonomic configuration tasks.

2. Choose Email and Trap Notifications.

 ![Email And Trap Notifications](image)

 Click to navigate to the Email and Trap Notifications Page.

 This page has a tab to configure **Email Settings** and a tab to configure **Notification Settings**.

3. Display the Email Settings tab.

 From here, you can configure:
 - SMTP Relay Settings
 - General Email Settings
 - Email Content Format
Administrative Tasks

SMTP Settings

The SMTP Settings fields identify the mail relay server you use on your network to enable email communication from Turbonomic. The relay you set up here enables emails from notifications, as well as emails to send reports to subscribers.

If the server requires authentication, provide the username and password here. You can also choose the following encryption options for notifications:

- None
- Ssl
- Tls

General Email Settings

Use this setting to specify the return address (the FROM address) for emails that Turbonomic generates and sends. This setting affects email notifications as well as emails for report subscriptions.

Email Content Format

To define message content, enter format variables and line breaks to determine what the message will include. For example, the following message format:

Turbonomic, Inc. www.turbonomic.com
{6}: {5} \nDatastores: {9}\nTarget: {7}\nEvent: {0} - {4}\nCategory: {1}\nSeverity: {2}

Results in the following email message:

PhysicalMachine: myMachine.corp.mydomain.com
Datastores: No value
Target: 10.10.111.111
Category: Workload Placement
Severity: MINOR
State: NOTIFY

The message format variables for a message are:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0}</td>
<td>Event type - The problem name. For example, “WorkloadBalance”.</td>
</tr>
</tbody>
</table>
| {1} | Sub category - One of:
• Performance Bottlenecks
• Storage Management
• Workload Placement
• Green IT
• Configuration Management
• Over Provisioning
• Capacity Management |
| {2} | Severity - One of:
• Critical
• Major
• Minor |
| {3} | State - Can be NOTIFY or CLEAR. |
| {4} | Description - A full description of the notification issue.
Affected entity - The name of the VM, host, or datastore associated with the problem. |
| {5} | Affected entity - The name of the VM, host, or datastore associated with the problem. |
| {6} | Class name - The type of device that registers this problem. Can be one of:
• VirtualMachine
• PhysicalMachine
• Datastore |
<p>| {7} | Target - The IP address or name of the hypervisor that manages the affected devices. |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{8}</td>
<td>Host name - The name of the physical machine that hosts the affected VM. This variable only applies to VM problem notifications.</td>
</tr>
<tr>
<td>{9}</td>
<td>Datastore names - The names of the data stores that serve the affected Host or VM. This variable only applies to VM and Host problem notifications.</td>
</tr>
</tbody>
</table>